Class test-I/UG/2nd Sem/H/22 (CBCS)/GM

2022

GOUR MAHAVIDYALAYA DEPARTMENT OF MATHEMATICS
 Paper : MTMH - DC-03
 [CBCS]

The figures in the margin indicate full marks.
Notations and symbols have their usual meanings.

Group- A

[Full marks: 20]

1. Answer any one question:
(a) State and prove the Archimedean property of \mathbb{R}.
(b) (i) Let A be a subset of \mathbb{R}. Show that $\left(A^{\prime}\right)^{\prime} \subset A^{\prime}$.
(ii) Let $A, B \subset \mathbb{R}$. Is $(A \cap B)^{\prime}=A^{\prime} \cap B^{\prime}$? Justify your answer.
2. State density property of \mathbb{R}. Show that there does not exist any rational number r satisfying $r^{2}=2$. Find the derived set of the set $T=\left\{\frac{1}{m}+\frac{1}{n}: m, n \in \mathbb{N}\right\}$.

Group- B

3. Answer any one question:
(a) Prove that the sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ defined by $x_{n+1}=\frac{1}{2}\left(x_{n}+y_{n}\right), \frac{2}{y_{n+1}}=\frac{1}{x_{n}}+\frac{1}{y_{n}}$ for $n \geq 1$. $x_{1}, y_{1}>0$ converges to a common limit l, where $l^{2}=x_{1} y_{1}$.
(b) Prove that the sequence $\left\{x_{n}\right\}$ defined by $x_{1}=\sqrt{2}$ and $x_{n+1}=\sqrt{2 x_{n}} \forall n \geq 1$ converges to 2 .
4. Show that $\lim _{n \rightarrow \infty}\left(\frac{1}{\sqrt{n^{2}+1}}+\frac{1}{\sqrt{n^{2}+2}}+\cdots+\frac{1}{\sqrt{n^{2}+n}}\right)=1$.
5. What is null sequence? Show that $\left\{\frac{n!}{n^{n}}\right\}$ is a null sequence.

GOURMAHAVIDYALAYA 1ST UNIT TEST

MATHEMATICS (Honours)

Paper Code: DC-H-04

Full Marks: 20
Time: one Hour

Notations and symbols have their usual meanings

Group-A

(Marks 12)

1. Answer any four questions.

$$
3 \times 4=12
$$

(a) Define the idempotent element in a group. Find the idempotent element in the monoid $\left(\mathbb{Z}_{5}, \cdot\right)$ and $\left(\mathbb{Z}_{6}, \cdot\right)$
(b) Let (S, \circ) be a semigroup. If for $x, y \in S, x^{2} \circ y=y=y \circ x^{2}$. Prove that (S, \circ) as an abelian group.
(c) Prove that the group (G, \circ) is abelian if and only if $(a \circ b)^{-1}=a^{-1} \circ b^{-1}$ for all $a, b \in G$.
(d) What are the difference between Symmetric group S_{3} and Klein's 4-group V ? Given your answer with justifications.
(e) Examine if the ring of matrices $\left\{\left(\begin{array}{cc}a & b \\ 2 b & a\end{array}\right): a, b \in \mathbb{R}\right\}$ contains divisors of zero.[3]

Group-B

(Marks 8)
Answer any two questions.
2. Define characteristic of a ring. Show that the characteristic of an integral domain is either zero or prime number.
3. Show that a finite integral domain is a field.
4. Find the units element in the ring $\left(\mathbb{Z}_{10},+, \cdot\right)$. Prove that the units form a cyclic group under multiplication.

