Class test-I/UG/2nd Sem/H/22 (CBCS)/GM

2022

GOUR MAHAVIDYALAYA DEPARTMENT OF MATHEMATICS Paper : MTMH - DC-03 [CBCS]

The figures in the margin indicate full marks. Notations and symbols have their usual meanings.

Group- A

[Full marks: 20]

[1+2]

1. Answer any one question:	$[1 \times 5 = 5]$
(a) State and prove the Archimedean property of \mathbb{R} .	[1+4]
(b) (i) Let A be a subset of \mathbb{R} . Show that $(A')' \subset A'$.	[3]
(ii) Let $A, B \subset \mathbb{R}$. Is $(A \cap B)' = A' \cap B'$? Justify your answer.	[1+1]
2. State density property of \mathbb{R} . Show that there does not exist any rational	number r
satisfying $r^2 = 2$. Find the derived set of the set $T = \left\{\frac{1}{m} + \frac{1}{n} : m, n \in \mathbb{N}\right\}$.	[1+2+2]

Group- B

3. Answer any one question: (a) Prove that the sequences $\{x_n\}$ and $\{y_n\}$ defined by $x_{n+1} = \frac{1}{2}(x_n + y_n)$, $\frac{2}{y_{n+1}} = \frac{1}{x_n} + \frac{1}{y_n}$ for $n \ge 1$. $x_1, y_1 > 0$ converges to a common limit l, where $l^2 = x_1 y_1$. (b) Prove that the sequence $\{x_n\}$ defined by $x_1 = \sqrt{2}$ and $x_{n+1} = \sqrt{2x_n} \forall n \ge 1$ converges to 2. [4]

4. Show that
$$\lim_{n \to \infty} \left(\frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \dots + \frac{1}{\sqrt{n^2 + n}} \right) = 1.$$
 [3]

5. What is null sequence? Show that $\left\{\frac{n!}{n^n}\right\}$ is a null sequence.

GOURMAHAVIDYALAYA 1ST UNIT TEST

MATHEMATICS (Honours)

Paper Code: DC-H-04

Full Marks: 20

Time: one Hour

Notations and symbols have their usual meanings

Group-A

(Marks 12)

1. Answer any four questions.

- (a) Define the idempotent element in a group. Find the idempotent element in the monoid (\mathbb{Z}_5, \cdot) and (\mathbb{Z}_6, \cdot) [1+2=3]
- (b) Let (S, \circ) be a semigroup. If for $x, y \in S, x^2 \circ y = y = y \circ x^2$. Prove that (S, \circ) as an abelian group. [3]
- (c) Prove that the group (G, \circ) is abelian if and only if $(a \circ b)^{-1} = a^{-1} \circ b^{-1}$ for all $a, b \in G$. |3|
- (d) What are the difference between Symmetric group S_3 and Klein's 4-group V? Given your answer with justifications. [3]
- (e) Examine if the ring of matrices $\left\{ \begin{pmatrix} a & b \\ 2b & a \end{pmatrix} : a, b \in \mathbb{R} \right\}$ contains divisors of zero.[3]

Group-B (Marks 8)

Answer any two questions.

- 2. Define characteristic of a ring. Show that the characteristic of an integral domain is either zero or prime number. [4]
- 3. Show that a finite integral domain is a field. [4]
- 4. Find the units element in the ring $(\mathbb{Z}_{10}, +, \cdot)$. Prove that the units form a cyclic group under multiplication. [4]

 $3 \times 4 = 12$

- $2 \times 4 = 8$