U.G. 4th Semester Examinations 2022

MATHEMATICS (Honours)

Paper Code: DC-08

[CBCS]

Full Marks: 32 Time: Two Hours

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

[DIFFERENTIAL EQUATIONS]

Group-A

1. Answer any four questions:

 $1 \times 4 = 4$

- (a) Show that $\frac{1}{3x^3y^3}$ is an integrating factor of $y(xy+2x^2y^2)dx+x(xy-x^2y^2)dy=0$.
- (b) Find integrating factor of the differential equation $(x^2y 2xy^2)dx (x^3 3x^2y)dy = 0$
- (c) Solve: $(x+3y+2)\frac{dy}{dx} = 1$
- (d) Solve: $y = px \sin^y p$, $p = \frac{dy}{dx}$
- (e) Find particular integral of $(D^2 + D 2)y = e^x$, $D = \frac{d}{dx}$
- (f) Is e^x an integral of the homogeneous equation $x \frac{d^2y}{dx^2} (2x-1)\frac{dy}{dx} + (x-1)y = 0$?
- (g) Obtain partial differential equation from $z = f(\sin x + \cos y)$.

Group-B

Answer any *two* questions :

5×2=10

2. Solve:
$$(x^2y - 2xy^2)dx - (x^3 - 3x^2y)dy = 0$$

- 3. Find the power series solution of $\frac{d^2y}{dx^2} + 3x\frac{dy}{dx} + 3y = 0$ about x = 0.
- 4. Solve: $(D^2 2D + 3)y = \sin x$, using method of undetermined coefficients.
- 5. Solve: $(1+2x)^2 \frac{d^2y}{dx^2} 6(1+2x)\frac{dy}{dx} + 16y = 8(1+2x)^2$, given that y(0) = 0, y'(0) = 2.

Group-C

Answer any two questions:

 $9 \times 2 = 18$

- 6. (a) Solve: $(x+1)\frac{d^2y}{dx^2} 2(x+3)\frac{dy}{dx} + (x+5)y = e^x$
 - (b) Use Charpit's method to find the complete and singular integrals of the PDE $(p^2 + q^2)y = qz$.
- 7. (a) Solve : $\frac{d^2y}{dx^2} + a^2y = \tan ax$ by the method of variation of parameter.
 - (b) Find eigen values and eigen functions of the differential equation $\frac{d^2y}{dx^2} + \lambda y = 0. \ (\lambda > 0) \quad \text{satisfying the boundary conditions} \quad y(0) = y(1) \quad \text{and} \quad y'(0) = y'(1).$
- 8. (a) Solve : (mz ny) p + (nx lz) q ly mx, by Lagrange Method, where $p = \frac{\partial z}{\partial x}$, $q = \frac{\partial z}{\partial y}$.
 - (b) Show that $P_{2n}(O) = (-1)^n \frac{(2n)!}{2^{2n}(n!)^2}$, where $P_n(x)$ denotes Legendre's polynomial.

5+4