TUTORIAL/UG/4th Sem/Gen/23/GM (CBCS)

Gour Mahavidyalaya

MATHEMATICS(General)

Paper Code: DC04/GE04

Semister IV

Numerical Methods and Probability Theory

Time : two hours

(GROUP A) (4 Marks)

 $4 \times 1 = 4$

- (a) If $f(x) = x^2 117 = 0$ then what is the iterative formula for Newton Raphson Method.
- (b) Show that $\Delta \nabla = \Delta \nabla$

Full Marks: 32

1. Answer any four.

- (c) What is the number of significant figure of the numbers 0.0320700 and 3200
- (d) Define absolute error and relative percentage error.

(e) State Baye's theorem.

- (f) Define moments generating function.
- (g) What is mean and variance of Binomial distribution B(n, p).

(GROUP B) (10 Marks)

Answer any two.

 $2 \times 5 = 10$

[5]

2. Solve the system of equation,

 $2x_1 + 3x_2 + 1x_3 = 9$ $15x_1 + 2x_2 + 3x_3 = 6$ $3x_1 + 1x_2 + 1x_3 = 8$ correct up to 3 significant figures.

3. Find y(4.4) by Euler's modified method, taking h = 0.2, from the differential equation: $\frac{dy}{dx} = \frac{2-y^2}{5x}$, y = 1 when x = 4. [5]

4. Determine the value of k such that f(x) defined by

$$f(x) = \begin{cases} kx(1-x) & ; 0 < x < 1\\ 0 & ; elsewhere \end{cases}$$

is probability density function.

Find the corresponding distribution function.

5. A and B are two independent witness in a case. The probability that A will speak the truth is x and the probability that B will speak the truth is y. A and B agree in a certain statement. Show that the probability that this statement is true is $\frac{xy}{1-x-y-xy}$ [5]

(GROUP C) (18 Marks)

Answer any two.

 $2 \times 9 = 18$

[5]

6. (a) Compute f(2) from the given table:

x	0	1	3	4	[5]
f(x)	5	6	50	105	

- (b) Find y(0.2) from the differential equation $\frac{dy}{dx} = x y$, y(0) = 1, taking h = 0.1, by Runge-Kutta methood, correct to five decimal places. [4]
- 7. (a) If $a \neq 0$, $c \neq 0$, b, d are constants, prove that

$$\rho(aX+b,cY+d) = \frac{ac}{|a||c|}\rho(X,Y)$$

where
$$\rho(X, Y)$$
 is correlation coefficient between X and Y.

- (b) Deascribe the method of bisection to find a root of an equation. [4]
- 8. (a) If m and μ_r denote the mean and central rth moment of a Poisson distribution, then prove that

$$\mu_{r+1} = rm\mu_{r-1} + m\frac{d\mu_r}{dm}$$

(b) Let A and B be two events such that $P(A) = \frac{3}{4}$ and $P(B) = \frac{5}{8}$. Show that $\frac{3}{8} \le P(A \cap B) \le \frac{5}{8}$ [4]

[5]

[5]

Internal Exam/UG/4th Sem/G/23 (CBCS)/GM

2023

GOUR MAHAVIDYALAYA DEPARTMENT OF MATHEMATICS Paper : MATH-G-SEC 02 [CBCS]

Full Marks: 32

Time: Two Hours

The figures in the margin indicate full marks. Notations and symbols have their usual meanings.

Group-A

4 Marks

1. Answer any **four** questions :

(a) Is it true that every relation which is symmetric and transitive is also reflexive? Give reasons.

(b) If a set S has m elements and a set T has n elements, find the number of elements in $S \cup T$. Assume that $S \cap T$ has k elements.

(c) Is the set $A = \{x : x + 4 = 4\}$ null? Justify it.

(d) Draw the circuit which realises the Boolean expression $(x + y + z') \cdot (x + y' + z) \cdot (x' + y + z)$.

- (e) Give an example of existential quantifier.
- (f) Define lattice with an example.
- (g) Write De Morgan's law for quantifiers.

Group-B

10 Marks

Answer any **two** questions :

- 2. Prove that the negation of the biconditional "p if and only if q" $(p \leftrightarrow q)$ is equivalent to the exclusive disjunctive form "Either p or q, but not both" $(p \oplus q)$. [5]
- 3. (a) Let (S, \leq) be a poset. If $a, b \in S$ have a greatest lower bound, show that it is unique. [2]

 $[2 \times 5 = 10]$

 $[4 \times 1 = 4]$

- (b) Prove that there does not exist a Boolean algebra containing only three elements.[3]
- 4. (a) Let X be a finite set having n elements. Show that $|P(X)| = 2^{|X|}$, where P(X) is the power set of X. [3]
 - (b) Find the function f of three variables x, y, z such that

$$f(x, y, z) = 1$$
, if at least two of the variables are 0
= 0, otherwise.

[2]

- 5. (a) An integer m is said to be related to another n if m is a multiple of n. Check if the relation is reflexive, symmetric and transitive. [3]
 - (b) Prove that the complement of each element is unique in a Boolean algebra B. [2]

Group-C

18 Marks

Answer any **two** questions :

6. (a) Show that in a Boolean algebra $(B, +, \cdot, ')$, $(a \cdot b) + (a' \cdot b) + (a \cdot b') + (a' \cdot b') = I$, for all $a, b \in B$. [3]

(b) A Boolean function f is defined by f(x, y, z) = (xy + xz')' + y'. Find the disjunctive normal form of f(x, y, z). [3]

(c) Define free and bound variables. Show by an example that the union of two transitive relations on a set X is not a transitive relation on X. [1+2]

7. (a) Define partition on a set. Prove that an equivalence relation determines a partition. [1+5]

(b) If
$$A = \{x : 2\cos^2 x + \sin x \le 2\}$$
 and $B = \{x : \frac{\pi}{2} \le x \le \frac{3\pi}{2}\}$, then find $A \cap B$. [3]

8. (a) Let A, B be subsets of a universal set. Prove that A = B if and only if $A \triangle B = \emptyset$. [5]

(b) Find the number of different reflexive relations on a set containing n elements. [4]

 $[2 \times 9 = 18]$