GOUR MAHAVIDYALAYA

MATHEMATICS (General)

Paper Code: MATH-DC-02/GE-02(Internal)

Full Marks: 32
Time: Two Hour

Group-A

1. Answer any four questions.
$1 \times 4=4$
(a) What do you mean by a absolutely convergence series?
(b) Solve the differential equations $\frac{d y}{d x}=\sin (x+y)$
(c) Find the value of $B\left(\frac{1}{2}, \frac{5}{2}\right)$, where B denotes the beta function.
(d) Find the limit $\lim _{n \rightarrow \infty}\left(2^{n}+3^{n}\right)^{1 / n}$
(e) Test the differentiability of the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x|x|$ for all $x \in \mathbb{R}$, at the point $x=0$.
(f) Find the integrating factor of the differential equation $\left(x^{3}+x y^{4}\right) d x+2 y^{3} d y=0$

Group-B

Answer any two questions.

$$
5 \times 2=10
$$

2. State Cauchy's general principal of Convergence of a real sequence. Use Cauchy's general principal of convergence to prove that the sequence $\left\{x_{n}\right\}$
where $x_{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$, is not convergence.

$$
\begin{equation*}
[2+3=5] \tag{5}
\end{equation*}
$$

3. Solve the differential equation $\frac{d^{3} y}{d x^{3}}-\frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}+5 y=e^{x} \cos 3 x$
4. Examine the convergence of the improper integral $\int_{0}^{\infty} \frac{d x}{x^{\frac{1}{2}}\left(1+x^{\frac{1}{4}}\right)}$
5. If $I_{n}=\int \frac{\sin n x}{\sin x} d x$, show that $(n-1)\left\{I_{n}-I_{n-2}\right\}=2 \sin (n-1) x$

Group-C

Answer any two questions.

$$
2 \times 9=18
$$

6. (a) Test the convergence of the series $1+\frac{1}{2} \cdot \frac{1}{3}+\frac{1 \cdot 3}{2 \cdot 4} \cdot \frac{1}{5}+\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \cdot \frac{1}{7}+\cdots \cdots$.
(b) Evaluate $\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}-\frac{1}{\sin x}\right)$
7. (a) State Rolle's theorem. Verify Rolle's theorem of the function $f(x)=x^{2}+\cos x$ on $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$.
(b) If $y=x^{n-1} \log x, n \in \mathbb{N}$, then prove that $y_{n}=\frac{(n-1)!}{x}$
8. (a) Find the value of $\int_{0}^{\pi / 2} \sin ^{5} \theta \cos ^{7} \theta d \theta$,
(b) Find integrating factor of the differential equation $\left(x y^{2}-e^{1 / x^{3}}\right) d x-x^{2} y d y=0$, then solve it.
