U.G. 5th Semester Examination 2021

MATHEMATICS (Honours)

Paper: SEC-1

[Discrete Mathematics]

(CBCS)

Full Marks: 32 Time: 2 Hours

The figures in the margin indicate full marks.

Notations and symbols have their usual meanings.

Group - A

(4 Marks)

1. Answer any four questions:

 $4 \times 1 = 4$

- (a) Define a connected graph.
- (b) If a graph G has 54 vertices and 17 connected components, then how many edges are there?
- (c) Define a cyclic graph.
- (d) Let A and B be sets with 3 and 4 objects respectively. How many bijective mapping can be drawn from A to B.
- (e) Let P = "p is prime" and given p = 2. What is the truth value of p.
- (f) Write the negation of $p \rightarrow q$.
- (g) 36 = _____ (mod 7), fill in the blank.

Group - B

(10 Marks)

Answer any two questions:

 $2 \times 5 = 10$

Prove that there are infinite number of primes.

- Draw a complete graph K₅ with vertices A, B, C, D, E. Draw all complete subgraph of K₅ with 4 vertices.
- Solve f = ABC' + AB'C' using K-map.
- Define isomorphism of graphs. If two graphs have the same number of vertices and same number of edges, are they isomorphic? Justify your answer.

Group - C

(18 Marks)

Answer any two questions:

 $2 \times 9 = 18$

- (a) Describe seven bridge problem of Konigsberg. Draw a graph for the problem.
 Hence show that one can not walk through all the bridge without repeat. 2+2+2
 - (b) Draw K_{2, 3}, the bipartite graph with two and three vertices. What is the sum of degrees of all the vertices.
 2+1
- 7. (a) Find the solution to the recurrence

relation $a_n = 3a_{n-1} + 4a_{n-2}$

with initial condition $a_0 = 5$ and $a_1 = 8$.

5

(b) Solve $11_x = 15 \pmod{20}$.

- 4
- (a) Show that an equivalence relation on a set, make a partition on the set and conversly.
 - (b) Find the disjunctive normal form of (x+y)(x'+z)+xy'.
