UG 1st Semester Examination 2021

MATHEMATICS (Honours/General)

Paper: DC-1 / GE-1

[Classical Algebra & Analytic Geometry] (CBCS)

Full Marks: 32 Time: 2 Hours

The figures in the margin indicate full marks. Notations and symbols have their usual meanings.

Group - A

(4 Marks)

1. Answer any four questions :

 $4 \times 1 = 4$

- (a) Find the value of φ(323).
- (b) Let A be a skew-symmetric matrix of order 3. What is the value of det(A).
- (c) Find the modulus and argument of −1 −i.
- (d) Apply Descartes' rule of signs to determine the minimum number of complex roots of the equation: $x^7 3x^3 + 1 = 0$.
- (e) Find the points on the x-axis whose distance from the point (α, β, γ) is $\sqrt{\alpha^2 + \beta^2 + \gamma^2}$.
- (f) Find the center and radius of the sphere $x^2 + y^2 + z^2 + 2x + 2y + 2z 12 = 0$.
- (g) Determine the rank of the matrix : $\begin{pmatrix} 0 & 2 & 1 & 3 \\ 2 & 0 & 3 & 0 \\ 1 & 3 & 0 & 1 \end{pmatrix}$.

Group - B

(10 Marks)

Answer any two questions:

 $2 \times 5 = 10$

- Use the principle of induction to prove that (3+√5)ⁿ + (3-√5)ⁿ is divisible by 2ⁿ, for all n∈N-
- 3. Use Laplace's expansion to prove that $\begin{vmatrix} a & b & c & d \\ -b & a & d & -c \\ -c & -d & a & b \\ -d & c & -b & a \end{vmatrix} = \left(a^2 + b^2 + c^2 + d^2\right)^2.$
- 4. A change of the rectangular axes, without changing the origin, transforms $ax^2 + 2hxy + by^2$ and $cx^2 + 2gxy + dy^2$ to $a'x'^2 + 2h'x'y' + b'y'^2$ and $c'x'^2 + 2g'x'y' + a'y'^2$, respectively. Show that ad + bc 2hg = a'd' + b'c' 2h'g'.
- 5. Show that only one tangent plane can be drawn to the sphere

$$x^2 + y^2 + z^2 - 2x + 6y + 2z + 8 = 0$$
 through the line $3x - 4y - 8 = 0 = y - 3z + 2$.

Group - C

(18 Marks)

Answer any two questions:

 $2 \times 9 = 18$

4

6. (a) If α, β, γ be the roots of the equation $x^3 + qx - r = 0$, then find the value of

$$\sum \frac{1}{\alpha^2 - \beta \gamma}$$
.

- (b) Prove that 3·4ⁿ⁺¹ = 3 (mod 9), where n ∈ IN.
- 7. (a) If $tan(\theta + i\phi) = sin(\alpha + i\beta)$, prove that $sin 2\theta cot \alpha = sin h 2\phi cot h\beta$.

- (b) If A be the matrix $\begin{pmatrix} 4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4 \end{pmatrix}$ then show that $A^2 10A + 16I = O$. Hence obtain $A^2 10A + 16I = O$.
- 8. (a) Find the values of a and b for which the plane ax + by + 5z 7 = 0 is perpendicular to the line x = 4r + 3, y = -5r + 4, z = -4r 2, where r is a parameter.
 - (b) A conic Γ' is described having the same focus and eccentricity as the conic $\Gamma': \frac{I}{r} = 1 + e \cos \theta (e < 1)$. The two conics Γ and Γ' touch each other only at the
 - point θ with $\theta = \alpha$. Prove that the latus rectum of the conic Γ' is $\frac{2l(1-e^2)}{1+2e\cos\alpha+e^2}$.

5