GOUR MAHAVIDYALAYA

MATHEMATICS (Honours)

Paper Code: MATH-DC01

Semester-I

Class Test-I
(d) Define continuity of a function on a domain D. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous on \mathbb{R} and $f\left(\frac{x+y}{2}\right)=\frac{f(x)+f(y)}{2}$ for all $x, y \in \mathbb{R}$. Prove that $f(x)=a x+b,(a, b \in \mathbb{R})$.

1. Answer all the question.
(a) State the necessary and sufficient condition for the general equation of second degree to represents a pair of real straight lines.
(b) Show that the equation $x^{2}+6 x y+9 y^{2}+4 x+12 y-5=0$ represents a pair of parallel lines and find the distance between them.
(c) Use Cauchy's principle to show that $\lim _{x \rightarrow 0} \cos \frac{1}{x}$ does not exists.
(d) Evaluate $\lim _{x \rightarrow 0^{+}}\left\{\frac{\sin x}{x}\right\}, \lim _{x \rightarrow 0^{-}}\left\{\frac{\sin x}{x}\right\}$, where $\{x\}=x-[x]=$ fractional part of x for all $x \in \mathbb{R}$.
[1/2+1/2]
2. Answer any three questions.
$5 \times 3=15$
(a) Show that if one of the lines given by the eqation $a x^{2}+2 h x y+b y^{2}=0$ be perpendicular to one of the lines given by $a^{\prime} x^{2}+2 h^{\prime} x y+b^{\prime} y^{2}=0$ then $\left(a a^{\prime}-b b^{\prime}\right)^{2}+4\left(a h^{\prime}+h b^{\prime}\right)\left(h a^{\prime}+b h^{\prime}\right)=0$.
(b) i. If the pair of straight lines joining the origin to the points of intersection of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the line $l x+m y+n=0$ are perpendicular to each other, then show that $\frac{a^{2}+b^{2}}{l^{2}+m^{2}}=\frac{a^{2} b^{2}}{n^{2}}$.
ii. The axes are rotated through an angle of 60° without change of origin. The coordinates of a point are $(4, \sqrt{3})$ in the new coordinate system. Find the coordinate of if in the old system.

$$
[3+2]
$$

(c) A function $f:[0,1] \rightarrow \mathbb{R}$ is defined by $f(x)=x, x$ is rational in $[0,1]$ $f(x)=(1-x), x$ is rational in $[0,1]$. show that (i) f is injective on $[0,1]$, (ii) f assumes every real number in $[0,1]$ (iii) f is continuous at $1 / 2$ and discontinuous at every other point in $[0,1]$

Gour Mahavidyalaya

MATHEMATICS (Honours)
Paper Code: MATH-H-DC02

Time : 1 hour

Gour Mahavidyalaya

MATHEMATICS (Honours)

Paper Code: MATH-H-DC02
Time : 1 hour

1. (a) Define a partition of a set with an example. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a mapping defined by $f(x)=x^{2}, x \in \mathbb{R}$. Is it surjective?
(b) Give an example of a relation on a set
(i) Which is symmetric, transitive but not reflexive.
(ii) Which is symmetric but neither transitive nor reflexive.
2. Any two.
$2 \times 3=6$
(a) Let S be set containing n elements. How many different reflexive relation can be defined on S ?
(b) Let P be an equivalence relation on a set A and $\mathrm{a}, \mathrm{b} \in \mathrm{A}, \mathrm{a} \bar{\rho} \mathrm{b}$. Show that $[a] \cap[b]=\phi$
(c) Let $f: \mathbb{R} \rightarrow S$ be a mapping defined by $f(x)=\frac{x}{1+|x|}, x \in \mathbb{R}$ where $S=\{x \in \mathbb{R}:-1<x<1\}$. Show that f is bijective.
3. Answer any one.
(a) i. If a, b, c are three real numbers then show that $a^{4}+b^{4}+c^{4} \geq a b c(a+b+c)$ When equal sign occurs?
ii. Prove that, $\sqrt{n}<(n!)^{\frac{1}{n}}<\frac{n+1}{2}$ for $n \geq 3, n \in \mathbb{N}$
(b) i. If a, b, c are lengths of the sides of a triangle then show that $\left(1+\frac{b}{a}-\frac{c}{a}\right)^{a}\left(1+\frac{c}{b}-\frac{a}{b}\right)^{b}\left(1+\frac{a}{c}-\frac{b}{c}\right)^{c}<1$
ii. If $\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=2$ then show that $a b c<\frac{1}{8}$
4. Answer any one.
(a) i. Find the value of $\sum_{n=1}^{13}\left(i^{n}+i^{n-1}\right)$, where $i=\sqrt{-1}$
ii. Find the product of all values of $\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)^{\frac{3}{4}}$
(b) Write De Moivre's theorem.

Find the principal argument of $1-\sin \alpha+i \cos \alpha, \alpha \in[0,2 \pi)$

1. (a) Define a partition of a set with an example. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a mapping defined by $f(x)=x^{2}, x \in \mathbb{R}$. Is it surjective?
(b) Give an example of a relation on a set
(i) Which is symmetric, transitive but not reflexive.
(ii) Which is symmetric but neither transitive nor reflexive.
2. Any two.
$2 \times 3=6$
(a) Let S be set containing n elements. How many different reflexive relation can be defined on S ?
(b) Let P be an equivalence relation on a set A and $\mathrm{a}, \mathrm{b} \in \mathrm{A}, \mathrm{a} \bar{\rho} \mathrm{b}$. Show that $[a] \cap[b]=\phi$
(c) Let $f: \mathbb{R} \rightarrow S$ be a mapping defined by $f(x)=\frac{x}{1+|x|}, x \in \mathbb{R}$ where $S=\{x \in \mathbb{R}:-1<x<1\}$. Show that f is bijective.
3. Answer any one.
(a) i. If a, b, c are three real numbers then show that $a^{4}+b^{4}+c^{4} \geq a b c(a+b+c)$ When equal sign occurs?
ii. Prove that, $\sqrt{n}<(n!)^{\frac{1}{n}}<\frac{n+1}{2}$, for $n \geq 3 \mathbb{N}$
(b) i. If a, b, c are lengths of the sides of a triangle then show that $\left(1+\frac{b}{a}-\frac{c}{a}\right)^{a}\left(1+\frac{c}{b}-\frac{a}{b}\right)^{b}\left(1+\frac{a}{c}-\frac{b}{c}\right)^{c}<1$
ii. If $\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=2$ then show that $a b c<\frac{1}{8}$
4. Answer any one.
(a) i. Find the value of $\sum_{n=1}^{13}\left(i^{n}+i^{n-1}\right)$, where $i=\sqrt{-1}$
ii. Find the product of all values of $\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)^{\frac{3}{4}}$
(b) Write De Moivre's theorem.

Find the principal argument of $1-\sin \alpha+i \cos \alpha, \alpha \in[0,2 \pi) \quad[1+4]$

