UG 1st Semester Examination 2021

CHEMISTRY (Honours)

Paper : DC-2 (Physical-I) (CBCS)

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Full Marks: 25 Time: Two Hours

4			-		Prof. Company
1	A morning	*****	fire to	P111 233	te menor
1	. Answer	dist	11 + C	uucs	tions.

1×5=5

- If temperature is doubled and the mass of the gaseous molecule is halved, the rms speed of the molecule will change by a factor of
 - (i) 1
 - (ii) 2
 - (m) 1/2
 - (iv) 1/4
- b) If T → ∞, the shape of Maxwell's velocity distribution will become
 - (i) a gaussian.
 - (ii) a delta function placed at the origin.
 - (iii) a Lorentzian
 - (iv) a straight line parallel to γ axis.
- c) Vibrational degree of freedom of CO is
 - (i) 1
 - (ii) 2
 - (iii) 3
 - (iv) 4
- d) The equation of state for one mole of a gas is given by P(V-b)=RT, where b and R are constants. The value of [δH/δP]_T is
 - (i) V-b
 - (ii) b
 - (iii)0
 - (iv) RT/(P+b)
- e) Which of the following is not a criterion of spontaneity?
 - (i) dU_{S,V} <0
 - (ii) dHsp<0
 - (iii) dS_{U,V} <0
 - (iv) dG2.7 <0
- f) For a reaction nA → product, rate constant (k) is 10⁻³M⁻²s⁻¹(where M=molarity), then
 - (i) [A] vs t graph will give straight line
 - (ii) 1/[A]2 vs t graph will give straight line
 - (iii) 1/[A]3 vs t graph will give straight line
 - (iv) 1/[A] vs t graph will give straight line
- g) If the amount of change of temperature (ΔT) of any one reservoir of a Carnot engine is same in magnitude, the increase in efficiency will be maximum when we

- (i) Decrease the temperature of the cold reservoir.
- (ii) Increase the temperature of the hot reservoir.
- (iii) Decrease the temperature of the hot reservoir.
- (iv) Increase the temperature of the cold reservoir.
- h) A reaction goes to a completion at a finite time. The order of the reaction is
 - (i) fractional-order
 - (ii) first-order
 - (iii) second-order
 - (iv) zero-order

2. Answer any four questions:

 $2 \times 4 = 8$

- (a) At high temperature the observed $\frac{c_F}{c_V}$ ratio for a non-linear polyatomic ideal gas is $\frac{7}{6}$. Determine the atomicity of the gas
- (b) It is impossible for two reversible adiabatic curves on a P-V diagram to intersect. Justify.
- (c) Show that adiabatic P-V curve of an ideal gas is steeper than the corresponding isothermal curve.
- (d) A certain reaction takes place in three steps with rate constants k₁,k₂ and k₃ and activation energies E₁,E₂,E₃. If overall rate constant k=k₁k₃/k₂, show that overall activation energy E=E₁ E₂+E₃.
- (e) A Carnot engine whose low temperature reservoir is at 7 °C has an efficiency of 40%. It is desired to increase the efficiency to 50%. By how many degrees should the temperature of the source be increased?
- (f) A certain first order reaction is 20% complete in 15 minutes at 27 °C but for the same extent of reaction, it takes 5 minutes at 37 °C. What is the activation energy of the reaction?
- (g) Calculate Boyle temperature for a gas obeying Van-der-Waals equation,

a=2.44 L2 atm mol-2, b=29.4 ml mol-1

(h) The rms speed of a gas at 27° C is 400 m s⁻¹. At what temperature the speed will be 1600 m s⁻¹.

Answer any two questions:

 $(2 \times 6 = 12)$

(a) (i) Find the dimension of 'A' that appears in Maxwell's speed distribution equation

$$\frac{1}{N}\frac{dNc}{dc} = AC^2 \exp[-mC^2/2kT]$$

where terms have their usual significance. What is its SI unit?

Draw the one-dimensional velocity distribution curve of the molecules of an ideal gas and comment on the area under the curve. 2+2+1

(ii) Define mean free path.

- (b) (i) Find the numerical value of the compressibility factor of a gas that obeys the equation of state P(V-nb) =nRT. The P and T are such that V/n=10b.
- (ii) Using suitable thermodynamic equation of state, evaluate (δU/δV)_T for ideal gas and for the van der Waals gas. What is the physical significance of the difference between two expressions?
- (c) (i) If a reversible Carnot cycle working between two temperatures T₁ and T₂ (T₂ > T₁) is plotted on a T-S diagram, show that the area enclosed is equal to the work done in the reversible cycle. Indicate the efficiency of the process as a ratio of two areas in the properly drawn diagram.
- (ii) Show that the work done in a reversible process is numerically greater than that in an irreversible process.
- (d) (i) Show that for a parallel reaction A→ B and A→ C, the activation energy of the overall reaction is given by,
- $E = \frac{k_1 E_1 + k_2 E_2}{k_1 + k_2}$; where E_1 and E_2 are the activation energies of two reactions having rate constants k_1 and k_2 respectively.
- (ii) For a reaction A → B + C, it is found that the rate increased by a factor 2.25 when the concentration is increased by a factor 1.5 at the same temperature. What is the order of the reaction with respect to A?