U.G. 3rd Semester Examination 2021

CHEMISTRY (Honours) Paper Code : DC-6

| Inorganic Chemistry |

(CBCS)

Full Marks : 25	Time: Two Hours

1. Answer any five questions from the following:

 $1 \times 5 = 5$

- (a) Accreding to molecular orbital theory for atomic species C2
 - (i) Bond order is zero and it is paramagnetic
 - (ii) Bond order is zero and it is diamagnetic
 - (iii) Bond order is two and it is diamagnetic
 - (iv) Bond order is two and it is paramagnetic
- (b) The coordination number of Ba²⁻ ions in barium fluoride is 8. The coordination number of the fluoride ions is
 - (i) 8
 - (ii) 4
 - (iii) 1
 - (iv) 2
- (e) How many α- and β- particles would be emitted during the disintegration of ²³²Th to ²⁰⁸Pb?
 - (i) 6α and 4β
 - (ii) 4α and 8β
 - (iii) 4α and 6β
 - (iv) 8α and 6β

- (d) The boiling points of noble gases are illustrative of the operation of forces of the type —
 - (i) ion-dipole
 - (ii) dipole-induced dipole
 - (iii) ion-induced dipole
 - (iv) London dispersion forces
- (e) Which of the following sequences represent the correct increasing order of the polarizing power of the cations?
 - (i) $Ca^{2+} \le Mg^{2+} \le Be^{2+} \le K^+$
 - (ii) $K^- \le Ca^{2+} \le Mg^{2+} \le Be^{2-}$
 - (iii) Mg2- < Be2- < K- < Ca2+
 - (iv) $Be^{2+} \le K^+ \le Ca^{2+} \le Mg^{2+}$
- (f) Band theory predicts that magnesium is an insulator. However, in practice it acts as a conductor due to
 - (i) presence of filled 3s- orbital
 - (ii) Overlap of filled 2p- and filled 3s- orbital
 - (iii) presence of unfilled 3p- orbital
 - (iv) Overlap of filled 3s- and empty 3p orbital
- (g) Elements of which of the following radioactive disintegration series do not occur in nature?
 - (i) Thorium series or 4n series
 - (ii) Neptunium series or (4n+1) series
 - (iii) Uranium series or (4n-2) series
 - (iv) Actinium series or (4n+3) series
- (h) According to VSEPR theory, the shapes of [SFCl2]" and [S2O4]2" should be
 - (i) trigonal planar for $[S_2O_4]^{2-}$ and trigonal pyramidal for $[SFCl_2]^+$
 - (ii) both trigonal planar
 - (iii) trigonal pyramidal for [S2O4]2- and trigonal planar for [SFCl2]4-
 - (iv) both trigonal pyramidal

Answer any four questions

 $2 \times 4 = 8$

- (a) Draw the schematic band models for insulator and intrinsic semiconductor.
- (b) What are extrinsic semiconductors? Give examples
- (c) A cancer patient undergoing radiotherapy is given a dose of 3.42 μg ⁶⁰Co. How much isotope will remain in his body after 30 years? The half-life of ⁶⁰Co is 5.27 years.
- (d) Do you expect the structures of PCl₃F₂ and PF₃Cl₂ to be different? If so why?
- (e) Differentiate between Schottky defect and Frenkel defect.
- (f) Based on MO theory explain the chemical reactivity of N2 molecule.
- (g) What do you mean by nuclear spallation reaction? Give example
- (h) Use Fajan's polarization rules to predict which is likely to be ionic or covalent: RbCl and CsCl

3. Answer any two questions:

 $6 \times 2 = 12$

- (a) (i) Calculate the limiting radius ratio value for coordination number 6 (octahedral geometry).
 - (ii) Discuss the valence bond theory to explain the nature of metallic bond.
 - (iii) Be is stable but B is not. Why?

21/2 + 2 5/5 + 1

- (b) (i) What are the significant differences observed in neptunium disintegration series from other disintegration series?
 - (ii) What information do we obtained from the plot of binding energy per nucleon vs. mass number?
 - (iii) What thermodynamic considerations are involved in creation of stoichiometric defects?

(c) (i) Using Born – Haber Cycle, calculate the electron affinity of chlorine from the following data:

Bond enthalpy of Cl2 = +240.0 kJ mol-1

Enthalpy of formation of NaCl (s) = -440.0 kJ mol-1

Enthalpy of sublimation of Na $(5) = +110.0 \text{ kJ mol}^{-1}$

Enthalpy of ionization of Na $(g) = +480.0 \text{ kJ mol}^{-1}$

Enthalpy of lattice formation of NaCl (s) = -810.0 kJ mol-1

- (ii) State Sody-Fajan group displacement law with suitable example.
- (iii) Write down the limitations of radius ratio concepts.

2 + 2 + 2

- (d) (i) On analysis, an ore of uranium shows the mass ratio for ²³⁸U to ²⁰⁶Pb = 6.08 All ²⁰⁶Pb are supposed to appear from the disintegration of ²³⁸U. Find the age of the ore. (Given, t_{1/2} for ²³⁸U = 4.5 × 10⁹ year, the next longest lived nuclide ²³⁴U in the series shows t_{1/2} = 2.5 × 10⁵ year)
 - (ii) Draw and explain the MO diagram for CO2 molecule.
 - (iii) What is the significance of Madelung constant?

21/2 + 21/2 + 1