U.G. 4th Semester Examination 2022

PHYSICS (Honours)

Paper Code: DC - 9

(Elements of Modern Physics)

Full Marks: 25 Time: Two Hours

		The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.		
1.	. Answer any <i>five</i> questions :			
	(a)	How the half life (τ) is related to the decay constant (λ) of a radioactive sat Which value does ' λ ' assume at the end product of a radioactive series ?	ample ?	
	(b)	A hydrogen atom is 5.3×10 ⁻¹¹ m in radius. Use the uncertainty principle to estin minimum energy an electron can have in this atom.	nate the 2	
	(c)	Which of the following is a possible solution of Schrödinger wave equation and (i) $A \cot x$ (ii) Ae^{-x^2} .	1 why ?	
	(d)	On fission, U^{235} yields two fragments of $A = 95$ and $A = 140$ roughly. Assume two fragments are ejected with equal and opposit momentum. Prove that their will be approximately in the ratio $3:2$.	are ejected with equal and opposit momentum. Prove that their energies	
	(e)	What do you mean by 'population inversion'? How is it achieved in a ruby las	er ? 1+1	
	(f)	The normalised wavefunction of a particle moving in a region $0 \le x \le L$ is g $\psi(x) = \sqrt{\frac{2}{L}} \sin \frac{n\pi x}{L}$, where 'n' is an integer. Prove that the expectation value		
		momentum of the particle is zero.	2	
	(g)	The nuclear radius of Be^8 is 2.4 F. Find that of Al^{2+} .	2	
2.	Ans	swer any <i>three</i> questions:	5×3=15	
	(a)	Write down Planel's rediction formula explaining the symbols used		

(a) Write down Planck's radiation formula, explaining the symbols used.

Obtain Stefan's law of radiation from Planck's formula.

2+3

[P.T.O.]

- (b) (i) From the kinetic energy of photoelectrons versus frequency of the incident radiation, comment on the slope of the curve and indicate the threshold frequency.
 - (ii) If $u(x) = e^{-x^2/2}$ is an eigenfunction of the operator $\left(\frac{d^2}{dx^2} x^2\right)$, find the corresponding eigenvalue.
 - (iii) Show that uncertainty relation does not allow presence of electrons in the Nucleus.
- (c) (i) What are magic numbers? Why are they so called?
 - (ii) Show from the semi-empirical mass formula, that A = 2z for light nuclei.

Take
$$\frac{a_c}{a_a} = 0.030$$
.

1

- (d) (i) State Moscley's law of characteristic X-ray spectra.
 - (ii) A particle of mass 'm' is confined to a one-dimensional box of length L extending from x = 0 to x = L. Show that the probability of finding the particle in the region

$$0 \le x \le \frac{L}{4}$$
 for an arbitrary value of quantum number 'n' is $P = \frac{1}{4} - \frac{\sin \frac{n\pi}{2}}{2n\pi}$.

- (e) (i) An electron of mass 9.1×10^{-31} kg is moving under a potential difference of 150 volt. Prove that the average wavelength of the corresponding de Broglie wave is nearly 1.0 Å.
 - (ii) Explain nuclear fission on the basis of liquid drop model. 2+3