UG/1st Sem/H/20 (CBCS)

2020

PHYSICS (Honours)

Paper: PHYH-DC-1T [CBCS]

Full Marks: 25 Time: Two Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

1. Answer any five questions:

 $2 \times 5 = 10$

- (a) Define scalar field and vector field. Give example of each.
- (b) If a vector field is given by $\vec{F} = (x^2 + y^2 + x)\hat{i} (2xy + y)\hat{j}$. Is this field irrotational?
- (c) If $\vec{r} = t\hat{i} t^2\hat{j} + (t-1)\hat{k}$ and $\vec{S} = 2t^2\hat{i} + 6t\hat{k}$, evaluate $\int_0^2 \vec{r} \cdot \vec{S} dt$
- (d) With the help of divergence theorem, show that $\int (\vec{\nabla} \phi \times \vec{\nabla} \psi) d\vec{s} = 0$
- (e) Find the value λ , for the differential equation $(xy^2 + \lambda x^2y)dx + (x+y)x^2dy = 0$ is exact.
- (f) Evaluate the integral $I = \int_{0}^{\infty} e^{-31} \delta(t-4) dt$

Page: 1 of 2

- (g) Solve the following differential equation $\frac{d^3y}{dx^3} \frac{d^3y}{dx^3} = 0$
- (h) Find the unit normal to the surface $xy^3z^2 = 4$ at (-1,-1,2)
- 2. Answer any three questions:

5×3=15

- (a) Use the Divergence Theorem, evaluate $\iint F dS$ where $F = 4xi 2y^2j + z^2k$ and S is the surface bounding the region $x^2 + y^2 = 4$, z = 0 and z = 3.
- (b) Prove that the spherical polar coordinate system is orthogonal. 5
- (c) Evaluate $\iiint (2x+y)dV$, where V is closed region bounded by the cylinder $z=4-x^2$ and the planes x=0, y=0, y=2 and z=0.
- (d) Solve: $\cos^2 x \frac{dy}{dx} + y = \tan x$
- (e) Solve $(D^2 6D + 9) = 6e^{3x} + 7e^{-2x} \log^2$

UG/1st Sem/H/20 (CBCS)

2020

PHYSICS (Honours)

Paper: PHYH-DC-2T [CBCS]

Full Marks: 25 Time: Two Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

1. Answer any five questions:

 $2 \times 5 = 10$

- (a) What do you mean by non-mertial frames? Give an example of such frame.
- (b) A particle moves in a field of force given by F_x = yz(1 − 2xyz) and F_z = xy(1 − 2xyz). Verify that the force is conservative.
- (d) Show that the rocket speed is twice the exhaust speed when $\frac{M_0}{M} = e^2$
- (e) Explain why a hollow cylinder is stronger than a solid cylinder of the same length, mass and material.
- (f) Calculate the Poisson's ratio for silver. Given Young's modulus for the silver is 7.25×10¹⁰ N/m² and bulk modulus is 11×10¹⁰ N/m².
- (g) State Kepler's laws of planetary motion.

Page: 1 of 2

Answer any three questions:

- $5 \times 3 = 15$
- (a) Prove that the kinetic energy of rotation of a rigid body can be expressed in the form $T = \frac{1}{2} I_{ij} \omega_i \omega_j$ with the convention that repeated indices are summed over x, y, z and show that relative to any point in the rigid body it can be simplified to the form $T = \frac{1}{2} \left(I_1 \omega_1^2 + I_2 \omega_2^2 + I_3 \omega_3^2 \right)$. 4+1=5
- (b) Derive an expression for the equation of continuity of an ideal fluid of density ρ. What is the form of this equation, when the fluid is incompressible?
- (c) (i) If a body falls freely in the earth's gravitational field form infinity, show that it attains the same velocity as that attained by a free fall from a height above the earth equal to the radius R under a constant acceleration of gravity 'g'.
 - (ii) The differential equation of the orbit of a particle of mass m under a central force is given by \[\frac{d^2u}{d\theta^2} + u = -\frac{m}{L^2u^2} f\left(\frac{1}{u}\right) \] where \[u = \frac{1}{r}, \]
 \[\L = \text{ constant, other notations have usual significance. Use the above relation and consider the following: A particle moves in a central orbit described by \[r = e^{(-u\theta)}, \alpha \] is a positive constant, with force centre at \[O \]. Find the nature of the force as a function of \[r. \]. \[3+2=5 \]
- (d) With necessary assumptions, deduce Poiseuille's formula for the viscous flow of a liquid in a capillary tube.
 5
- (e) Find the depression of a cantilever beam of uniform cross-section and weight W, when loaded at the free end by a weight W₀.
 5