UG/1st Sem/PHS/H/21(CBCS)

UG 1st Semester Examination 2021 PHYSICS (Honours)

Paper : DC-1

[CBCS]
Full Marks : 25
Time : Two Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

1. Answer any five questions :
(a) If $u \vec{a}=\vec{\nabla} v$, where u, v are scalar fields and \vec{a} is a vector field, then show that

$$
\vec{a} . \vec{\nabla} \times \vec{a}=0 .
$$

(b) Show that the vector field $\vec{F}=2 x y \hat{\imath}+\left(x^{2}+2 y z\right) \hat{\jmath}+\left(y^{2}+1\right) \hat{k}$ is conservative and find the scalar potential.
(c) Find the total work done in moving a particle in a force field given by $\vec{F}=3 x y \hat{\imath}-5 z \hat{\jmath}+$ $10 x \hat{k}$ along the curve $x=t^{2}+1, y=2 t^{2}, z=t^{3}$ from $t=1$ to $t=2$.
(d) If $\vec{A}(t)$ has a constant magnitude and $\left|\frac{d \vec{A}}{d t}\right| \neq 0$, then show that $\frac{d \vec{A}}{d t}$ is perpendicular to \vec{A}.
(e) Use Stokes' theorem to show that the line integral of $\vec{F}=-y \hat{\imath}+x \hat{\jmath}$ around a closed curve in the $X Y$-plane is twice the area enclosed by the curve.
(f) Prove that $\nabla^{2} r^{n}=n(n+1) r^{n-2}$.
(g) Evaluate the integral $I=\int_{0}^{\frac{\pi}{2}} \cos t \delta\left(t-\frac{\pi}{4}\right) d t$.
2. Answer any three questions:
(a) (i)State the Taylor series for functions of one variable.
(ii) Obtain the expression for Laplace's equations in spherical polar co-ordinates for a point in space described by the co-ordinates (r, θ, φ).
(iii) What is the physical significance of $\vec{\nabla} \cdot \vec{B}=0$? $\quad 1+3+1=5$
(b) (i)Prove that $\iiint\left(\phi \nabla^{2} \psi-\psi \nabla^{2} \phi\right) d v=\iint(\phi \vec{\nabla} \psi-\psi \vec{\nabla} \phi) \cdot d \vec{s}$.
(ii) A scalar field is defined by $\phi=\phi(x, y)$. If $d \phi$ is a perfect differential then show that

$$
\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x} .
$$

$$
3+2=5
$$

(c) Evaluate the integral $\oint\left[\left(x y-x^{2}\right) d x+x^{2} y d y\right]$ over the triangle bounded by the lines $y=0, x=1$ and $y=x$ and hence verify Green's theorem in the plane. 5
(d) Solve by the method of separation of variables:

$$
3 \frac{\partial U}{\partial x}+2 \frac{\partial U}{\partial y}=0, \text { where } U(x, 0)=4 e^{-x} .
$$

(e) Solve the differential equation:

$$
x y^{2} d x+\left(2+x^{2} y\right) d y=0
$$

with the condition that, $y($ at $x=1)=2$.

UG 1st Semester Examination 2021
 PHYSICS (HONOURS)

Paper: DC- 2 [CBCS]

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

1. Answer any five questions :
(a) If a force \vec{F} satisfies the relation $\vec{\nabla} \times \vec{F}=0$, then show that the force field is conservative.
(b) A circular disc of mass M and radius r is set rolling on a horizontal table. If ω be the angular velocity of the disc, show that its total energy is $\frac{3}{4} M r^{2} \omega^{2}$.
(c) Consider a rocket moving vertically upward against uniform gravity \vec{g}, that ejects gas with a constant velocity \vec{v} with respect to itself. Obtain the equation of motion of the rocket.
(d) By using Euler's equations, show that the rotational kinetic energy of a rigid body is conserved when the applied torque is zero.
(e) Derive gravitational field intensity due to a point mass M at a distance r from it, using Gauss's theorem of Gravitation.
(f) Calculate the Poisson's ratio for silver, given Young's modulus for silver is 7.25×10^{10} $\mathrm{N} / \mathrm{m}^{2}$ and Bulk modulus is $11 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}$.
(g) What is Reynold's number? How is it used to determine whether the nature of flow of a liquid is streamline or turbulent?
2. Answer any three questions:
(a) Prove that the total energy of a particle of mass m moving under a central force is given by

$$
E=\frac{h^{2}}{2 m}\left[u^{2}+\left(\frac{d u}{d \theta}\right)^{2}\right]+V(r)
$$

where $u=\frac{1}{r}, h=$ angular momentum of the particle and $V(r)$ is the potential energy at r.
(b) (i) The density of a sphere varies as the depth below the surface. Show that the gravitational attraction is greatest at a depth equal to $1 / 3$ of the radius.
(ii) What do you understand by gravitational self-energy of a homogeneous sphere?

$$
3+2=5
$$

(c) (i) A reference frame is rotating with an angular velocity $\vec{\omega}$ with respect to the laboratory frame. Establish the transformation relation $\frac{d}{d t}=\frac{d^{\prime}}{d t}+\vec{\omega} \times$. How does a vector transform in such cases, if it is parallel to the axis of rotation?
(ii) Calculate the principal moments of inertia of a homogeneous cube of mass M and side a.

$$
1+1+3=5
$$

(d) (i) Establish that shear is equivalent to elongation and contraction at right angles to each other.
(ii) A metal rod of length L and cross-section α suffers a small longitudinal strain and is stretched by l in length. Show that the potential energy stored in the rod due to this strain is $\left(Y \alpha l^{2}\right) / 2 L$ if the Young's modulus of the material is Y.

$$
3+2=5
$$

(e) (i) Write down the equation of continuity in case of fluid motion.
(ii) A capillary tube of radius a and length l is fitted horizontally at the bottom of a cylindrical flask of cross-section A. Initially, there is water in the flask up to a height h_{1}. Show that the time $T=\left(8 \eta l A / \pi \rho g a^{4}\right) \ln \frac{h_{1}}{h_{2}}$ is required for the height to be reduced from h_{1} to h_{2}. Here η is the coefficient of viscosity of water.

