PHYSICS (Honours)

Paper Code : IV-A \& B
INew Syllabus]

Full Marks : 70

Time : Four Hours

Important Instructions for Multiple Choice Question (MCQ)

- Write Subject Name and Code, Registracion number Session and Koll number in the space provided on the Answer Suipt.
Example : Such as for Fuper $Ш-А(\mathrm{MCQ})$ and $\amalg-\mathrm{B}$ (Descriptive).

Subject Code : | Π | A | $\&$ | B |
| :--- | :--- | :--- | :--- |

Subject : Name \qquad

- Candidaters are required til altompt all questions (MCO). Below each question fous attematives are given [ic. (A), (B), (C), (D)]. Only one of these alemuatives is "COMRECI" answer. The cardidate has to write the Conect Altemative [i.e: (A)/(B)/(C) (D)] against mach Question No. in the Arswer Script.
Example - If albernative A of I is correct, then write:

$$
\text { 1. }-\mathrm{A}
$$

- There is no negrative marking for wrong answer.
- No student will be allowed to leave the examination hall betore completion of the examination.
- Using abusive language or employing any other unfair meanch, teff she will render himselfifuerself liable to disqualify.
- Uise of any mobile phonc, calculator or log table etc. in the examination hall is prohibited, except specially instructed in the question paper.

Subject Code: $\mathrm{m}|\mathrm{A}| \mathrm{E} \mid \mathrm{B}$
Subject Name: \qquad

$$
\text { 1. }-A
$$

 पनूर्यणि पেत्तश यापन ना।

Paper Code: IVA

Choose the correctanswer.

Time: Thirty Minutes Each question carries $1 \frac{1}{2}$ marks.

1. A telescope with an objective of focal lengh 50 cm is used to bing into view an object 150 cm distant. When the eyepiece is adjusted to fom the itruge at infanity, the mapnifing powet is S. The focal lengeth of the eyepioce is -
(A) +15 cm
(F) -15 cm
(C) +75 cm
(D) -75 cm
2. A pardel beam of light of wavelength 589 n n is incident on a thin plate of ylass of refractive index 1.5 such that the angle of refraction is 60°. Calculate the smallest thickneas of the plate for which dark finge appears by reflcction -
(A) 340 nta
(B) 366.66 nm
(C) 392.66 nm
(D) 240.25 dm
3. In a Huygens' cycpiece lentes of focal lengths 15.0 mom and 5.0 mm respectively arc used. The equivalent focal length of the eyepioce is -
(A) 10.0 mm
(B) 75 mm
(C) 3.75 mm
(D) 75.0 mm
4. In a double slit experiment the width of each slit is 0.1 mm and that of the opaque space is 0.3 mm . The fuissing orlers of interferance fringes would be-
(A) $2,4,6 \mathrm{etc}$.
(B) $3,6,9 \mathrm{etc}$.
(C) $4,8,12 \mathrm{etc}$
(D) None of the above
S. Two coherent sources of the same frequency have intensitics I_{0} and Z_{0}. Then the ratio of maximum indensity to minimum indensity in their intirfenence pation would be -
(A) $3: 1$
(B) $4: 1$
(C) $20: 3$
(D) $34: 1$
5. At a given point in space the tolal light wave is composed of three phases $P_{1}=a, P_{2}=\frac{a}{2} e^{i t}$ and $F_{3}=\frac{a}{2} \varepsilon^{-r \theta}$, the intensity of light at this point is -
(A) $4 a^{2} \cos ^{2}\left(\frac{\theta}{2}\right)$
(B) $4 a^{2} \cos ^{*}\left(\frac{\theta}{2}\right)$
(C) $a^{2} \operatorname{coss}^{2} \theta$
(D) $4 a^{2} \cos ^{2}(2 \theta)$
6. A planc diffraction grating, having 80 lives per nom, just resolves the swlium D-tines (having wavelengths 589.0 mm and 589.6 mm) in the second order. The least width of the grading must be -
(A) 6.15 mm
(B) 6.20 mm
(C) 6.25 mm
(D) 6.30 mm
7. A Zener diode ats as a perfect vollage regulator when the percontage regulation has a value -
(A) 100%
(D) Not less than 50\%
(C) Above 90%
(D) 0%
8. A transisict oparales urder fixed bias condition. If $V_{C C}=9.0 \mathrm{~V}, R_{A}=300 \mathrm{kS}$, $\beta=50$ and $V_{A E}$ is receligible, the colleator current will be -
(A) 4.5 mA
(B) $30.0 \mu \mathrm{~A}$
(C) 1.5 mA
(D) 1.53 mtA
9. A truth-table is given below for the two inpurs A and B and the output Y :

A	B	Y
0	0	1
0	1	0
1	0	0
1	1	0

The gate whith comespornds to the uncuve truth-table is -
(A) OR galc
(B) NOR gate
(C) XOR gate
(D) NAND gate

PHYSICS (Honours)

Paper Code : IV-B

[New Syllabus]
Full Marks : 55
Time: Three Hours Thirty Mirmotes

The figures in the margin indicofe fill marks.

Answcrfue qumstions taking at least one from each group.
Any kind of calculator may tee used.

Group - A

[Geometrical Opfics]

1. (a) State Fermat's principle in ontics and with its help detuce Soell'si law of refraction of light in a curved sutioce.
(b) Obtain the tanslation and refraction matrices as are used it geometrical optics. Hence, derive the system matrix for a thick lens.
2. (a) Explain bricfly 'coma' and 'astignatimn'.
(b) Find the pondition of achromatism of two thin co-axial lenses of the same raaterial separated by a distance.
(c) When seen momally through the flat surfare, the greatest thickness of a hemispherical glass block appears to be 2.4 cm but when seets normally through the curved surfice, it appears to be 3.0 cm thick. The actual thickness is 3.6 cm . Find (i) the refractive index of glass and (ii) the radius of curvalure of the curved surface.
(d) Show that Limear magnification of a lens is equal to the procuct of angular magnification and longitudinal mageification.

3

3127-700.

5. (a) A mencehromatic beam of parallel light rays is incident normally on a plane diffaction grating with N lines per unit tenglh. Ohain expressions for angular positions of the maxima and the minima of the transmittel spectra. Diseluss the fomation of principal and secondary maxima lndicate wity the secondary maxima ane not usually visible.
(b) In which ways is a concave grabing superior to a plane itaismission gyating?2
(c) What is meant by 'nomal spectrun'?
6. (a) State Rayicigh's mriterion for the resolution of spectral lincs. Find an expression for the chromatic resolving pouer of a prisur
(b) Light is incident at 70° on a plane reflection grating which has 6000 lines per ent ruled ower a width of 3.0 cm . What is the maximurt fesolving power available at a wavelength of 5000 A ?
(c). A plane grating which has 4000 lines per cm is used at normal incidente. Show that the dispersive power or the erating in the third order spectrwn in the wavelength region of 500 nm is 15000 radianicm.

Group - C
|Electronics - П
7. (a) State Thevenin's theorcm for an electrical netwark.
(b) A voltage source V_{s} having interial tesistance R_{s} is connected to a variable load R_{L} such that $R_{L} \geq 100 R_{S}$. Show that when the load is varicd; the materntage change in the load woltage is only 1%.
(c) How is the depletion region formed in a p-n junction diode 7 Mention the onder of its width with biasing.

Tren Over
(d) Draw the tument-voltage characteristic curve of a 7ener diode for forward and reverse bias. Indecate cleurly the 'breakdown region'. Chworse a point in the buakdowan region and cstimate the dymanic or a.c. resistance at that proint.
$1+1+$]
(e) Discuss clearly the mechanism of 'Zener bieakdown'.
9. (4) Define of and for of bipolar transistar and obtain a relabion hetwern therl. $2+2$
(b) What is Farly tulect? 2
(c) Draw the cineut diagran of a posiliwe djude huric AND gate and explain iti operation. Give the releyant truth thble.

P－II（ $\mathbf{I}+1+1$ ）H／ 19 （N）

2019

PHYSICS（Honours）

Paper Code：V－A \＆B
［New Syllabus］
Full Marks： 70
Tuthe：Four Hours

Important Instructions for Multiple Choice Question（MCQ）

－Write 5ubject Name and Code，Rejictration number，Session and Roll number in the space provided on the Answer Soript．
Example：Such as for faper I⿴⿱冂一⿱一一厶心－A（MCO）and III－B（Descriptive）．

Subject Code ： | 1 IF | A | $\boldsymbol{\&}$ | \mathbf{B} |
| :--- | :--- | :--- | :--- |

Subject Name \qquad
－Candjdates are required to attempt all questions（NCO2．Helow ead question four alternatives are given［i．e．（A），（B），（C），（D）］．Only one of these atremations is＂CORRECT＂answer．The candidete has to write the Conrect Altertative［i．e．$(A) /(B) /(C) /(D)]$ against each Question No． in the Answer Script．
Example－If alteriative A of 1 is correct，then write：

$$
\text { 1. }-\mathbf{A}
$$

＊There is no negative marking for wrong answer．
＊No student will be allowed to leave the examination hall before completion of the examination．
－Using abusive language or employing any other urfair means，hel she will render himselffherself liable to disqualify．
－Use of any mobile phone，calculator or log table etc．in the examination hall is prohibited，except spescially instructed in the question paper．

Subject Cude： | \boldsymbol{m} | A | \mathbb{E} | B |
| :--- | :--- | :--- | :--- |

Subject Name
 সম্ভাব্য টछ जाর উछ＜्রत्र

$$
\text { 1. }-\mathbf{A}
$$

－ज्ञान উ
 অनूর্জি Cসఆয়া যাশে না！

UGB_UG_Question_Physics Hqnours_Part-II_Examination_2019

Paper Code: V-A

Choose the comet answer.

Each question carries $1 \frac{1}{2}$ marks.
I. The thermodynamic functing which remains constant in an isothermal isobaric process is -
(A) Helmboltz's free enetgy'
(B) Gibbs' free exergy
(C) Entilalpy
(D) intemal exergy
2. The efticiency of a cirnot engion is 40%. The sink temperature is $15^{\circ} \mathrm{C}$. ' lb corrssponding source temperature is -
(A) $207^{\circ} \mathrm{C}$
(B) $200^{\circ} \mathrm{C}$
(C) $480^{\circ} \mathrm{C}$
(D) None of the abowe
6. A coil of self inductance 100 mll is connceted in series with anather coil of self inductance 169 mH . The effective indursarpee of the combination is found to be 70 mH . The mutual inductance between the coils is -
(A) 100 mLH
(B) 99.5 mH
(C) 99.0 mH
(D) 69.0 mH
7. The motals M_{1} and M_{2} fonm a thermocouple cach with a sitantard metal S. For the $M_{1}-S$ couple, the thermoelectric powier is $P_{1}=(-0.04 t+16)$ $\mu v^{\prime \circ} \mathrm{C}$, while for the $M_{2}-S$ couple it is $P_{2}=(0.01 f+2) \mu v l^{\prime 2} \mathrm{C}$. The teutral temperature for the $M_{1}-M_{2}$ couple is -
(A) $280^{\circ} \mathrm{C}$
(B) $200^{\circ} \mathrm{C}$
(C) $400^{\circ} \mathrm{C}$
(D) $300^{\circ} \mathrm{C}$
8. A charged parlicle moves with a uriform yelocity $\vec{u}=\sin ^{\hat{\prime}} \mathrm{ms}^{-1}$ in a regoron where $\vec{E}=30 j \mathrm{Vm}^{-1}$ and $\vec{B}=B_{0} \hat{k}$ tesla. The value of B_{0} is -
(A) 5.0 tesla
(B) 0.167 tesla
(C) 6.0 tesla
(D) 150.0 tesla
9. A curremt I is passing through the wire shaped as shown in the figure. The ruaphetic field al the point P is :

(A) $\left(\mu_{0} I\right) / 4 \alpha$
(B) $\left(11_{0} I\right) / 4 \pi \sigma$
(C) $\left(\mu_{0} I\right) / 2 a$
(T) $\left(\mu_{0} I\right) / a$
10. A cylindrital bar mayyet is kept along the axis of a cincular coil. On fotating the magnet about its axis, the coil will experience ith it -
(A) alteratimg current
(B) direct aurent
(C) only emm
(D) No current

P-II $\mathbf{1} \mathbf{]}+\mathbf{L}+1) \mathrm{H} / 19$ (N)

PHYSICS (Honours)

Paper Code : V-B
[New Syllabusl
Frull Marks: 55
Time : Tiree Honus Thirty Minutes
The flgures in the margin indicate full morks.
Answer five questions, taking al least two from each group.
(Any kind of Calculator may be used.)

Group - A

[Thermodynamian

1. (a) Is temperatuat of a boxiy an extasive or an intensive variable? Explain
(b) What is meant by thermodynamic equilibrium? What is a quasistatic process?
(c) One mole of an ideal gas undergoes an adiabatic frec expansion 30 that its volume is doubled. Compule the change in entropy in the process, if any. 2
(d) Represent the various strokes of a diesel cycle in an indicator diaparm and obtain an expression for the efficienty of be cycle
2. (a) Doduce the following relation :

$$
\left(\frac{\partial U}{\partial V}\right)_{T}=T\left(\frac{\partial P}{\partial T}\right)_{V}-P, \text { temns being ussial. }
$$

Show that for a van der Waals' gas, $\left(\frac{\partial U}{\partial V}\right)_{T}=\frac{a}{V^{2}}$.
Ifence, prove that the temperature change during a fres exparsion of a yan der Wais' gas from a volume V_{i} to a trial wolume V_{f} is

$$
\Delta T=\frac{a}{c_{V}}, \frac{V_{1}-V_{f}}{V_{2} V_{f}}
$$

(b) Using the chind kaw of themodynamics, prove that the sbysolute zero of temperature cannot be attained.
(c) State $1 \boldsymbol{c}$ Chatclicr's principle.
3. (a) How is the ondec of a phase transition defined? Doctuce the following Intent heat equations :

$$
\text { (i) }\left(\frac{d P}{d T}\right)_{\text {TOI }}=\frac{L}{T\left(v_{2}-v_{1}\right)} \text { and }
$$

(ii) $\frac{d L}{d T}-\frac{L}{T}=C_{2}-C_{\mathrm{L}}$, where L is the latent heat of the system at a temperature T and ather symbols are usual.

1+3+3
(b) The density of iodine al the boiling point $\left(185.3^{\circ} \mathrm{C}\right)$ is 3.71 gow latent heat of vaporisalion is $40.9 \mathrm{cal} / \mathrm{mm}$. If the boiling point changes by $I^{\circ} \mathrm{C}$ for a change of pressure of 17 men of El g calculate the specific volume of the vapour.
"r. Take $J=4.18$ joule/cal.
4. (a) What is J.T. effect? Show that J.T. coefficiont ' μ ' is giver by

$$
\mu=\frac{1}{C_{\mu}}\left[T\left(\frac{\partial V}{\partial T}\right)_{P}-V\right]
$$

(b) What is adiabatic demagnetisation? Describe briefly how it has been used to produce very low tenlperatures.
(c) The phase cquilibrito garye of solid and vapour ammonia is given by In $P=23.03-\frac{3754}{I}$, and that of liquid and vepour armonia is given by

$$
\ln P=19.49-\frac{3063}{T}
$$

Estinnate the triple point of anmonia
Group - B
[Electricity - II $\}$
5. (a) Using Bipl-Sayart law, deduce an expression for the matretic field at an axial point of a eircular coil carrying a sleady current

How could you produce a uniForm matretic field in the laboratory by using two identical circular cuils? Justify your arnser by mathematical reatons.
(b) A cirtular cail of adius ' a ' canyins a curretit f is lying on the $x-y$ planc with its contre at the arigin There is an extemal uiform angnetic feld :

$$
\vec{B}=\frac{B}{\sqrt{2}}(\hat{i}+\hat{j})
$$

Find the force and the torque acting on the soil.
(c) What is a Bohr radenctur? Give its value in SI units.
6. (a) Write dowa the differential form of Amperc's circuital theorem. Hence, comert it into the usual imegral form

Turs ower
(h) A metal dixe of tadius ' a ' totates with a ponstant angular velocity $\overrightarrow{0}$ about its axis in a magenctic field of induction \vec{B} nemal to the plane of the dise and paralel to ${ }^{\text {o. }}$. Show that the potrntial difference between the centre and the in of the disc would tee $\frac{6 \mathrm{Ba}^{2}}{2}$.
(c) What do you understand by froe and bound curents? For non-aniform magnelisation of a matrial, establish the relation : $\vec{v} \times \vec{H}=\overrightarrow{J_{H}}$, terms being usus.
7. (a) With nesessary theory discuss the method of measuremem of a high resiscamce by the leakage of change of a charged capacitur.
(b) A railway track 1.2 m wide The vertical component of the tarth's magretic field is 5×10^{-5} iesle Calculate the c.m.f. in mV that will exist between the rails when a train ruas on the fine at a speed of $60 \mathrm{~km} / \mathrm{hr}$.
(c) For a thennowectric circuit comprised by tho metals A and B, dedwe the relation:

$$
\pi=T \frac{d E}{d T}, \text { symbruls being usual. }
$$

8. (a) A series LCR circuit is driven by an alcemating e,m. $T V=V_{0}$ sith wh, terms being usul. Shou graplically the variation of curcent (B) with the frequency $\left(f=\frac{\infty}{2 \pi}\right)$ of the supply e.m.f. Explain the tem 'resonante' in this connection and indicale the resonan frequency (f_{0}) in yan wraph. Define Q-factor for the circuit.
(b) A 60 Volt-10W lamp is to be jit in an a.c. supply of $100 \mathrm{~V}-50 \mathrm{~Hz}$. in series with a suitable cupacitor. Find the capacity of the capacitor that would be rected for the purpose.
$3129-900$
(c) If two coils of self inductances L_{1} and L_{2} are couplod by a mutual inuctance M, show that the mannetic enerigy of the system is,

$$
U=\frac{1}{2}\left(L_{1} I_{1}^{2}+L_{2} I_{2}^{2}+M I_{1} I_{2}\right), \text { where } I_{1} \text { and } I_{2} \text { are the curreats in the }
$$

two coils.

