2020

PHYSICS (Honours)

Paper Code: I - A & B
[New Syllabus]

Important Instructions for Multiple Choice Question (MCQ)

• Write Subject Name and Code, Registration number, Session and Roll number in the space provided on the Answer Script.

Example: Such as for Paper III-A (MCQ) and III-B (Descriptive).

Subject Code : III A & B

Subject Name:

• Candidates are required to attempt all questions (MCQ). Below each question, four alternatives are given [i.e. (A), (B), (C), (D)]. Only one of these alternatives is 'CORRECT' answer. The candidate has to write the Correct Alternative [i.e. (A)/(B)/(C)/(D)] against each Question No. in the Answer Script.

Example — If alternative A of 1 is correct, then write : $\mathbf{1} = \mathbf{A}$

• There is no negative marking for wrong answer.

Page : 1 of 8

মাল্টিপল চয়েস প্রশ্নের (MCQ) জন্য জরুরী নির্দেশাবলী

•	উত্তরপত্রে	নিৰ্দেশিত	স্থানে	বিষয়ের	(Subject)	নাম	এবং	কোড,	রেজিস্ট্রেশন	নম্বর,	সেশন
	একং রোল	নম্বর লি	খতে হ	হব।							

উদাহরণ — যেমন Paper III-A (MCQ) এবং III-B (Descriptive)। Subject Code : III A & B

Subject Name :

পরীক্ষার্থীদের সবগুলি প্রশ্নের (MCQ) উত্তর দিতে হবে। প্রতিটি প্রশ্নে চারটি করে সম্ভাব্য
উত্তর, যথাক্রমে (A), (B), (C) এবং (D) করে দেওয়া আছে। পরীক্ষার্থীকে তার উত্তরের
স্বপক্ষে (A)/(B)/(C)/(D) সঠিক বিকল্পটিকে প্রশ্ন নম্বর উল্লেখসহ উত্তরপত্রে লিখতে
হবে।

উদাহরণ — যদি 1 নম্বর প্রশ্নের সঠিক উত্তর A হয় তবে লিখতে হবে : 1. — A

ভুল উত্তরের জন্য কোন নেগেটিভ মার্কিং নেই।

Page: 2 of 8

Paper Code: I - A

Full Marks: 15 Time: Thirty Minutes

Answer *all* the Questions.
Choose the Correct Answer.
Each Question Carries 1.5 Marks.

- 1. For the vectors $\vec{a} = \hat{j} + \hat{k}$, $\vec{b} = 2\hat{i} + 3\hat{j}$, $\vec{c} = \hat{j} \hat{k}$; the vector product of $\vec{a} \times (\vec{b} \times \vec{c})$ is
 - (A) in the direction opposite to \vec{c}
 - (B) in the same direction as \vec{c}
 - (C) in the same direction as \vec{b}
 - (D) in the direction opposite to \vec{c}
- 2. The value of $\vec{\nabla} \cdot \vec{r}$ is
 - (A) 7
 - (B) 11
 - (C) 2
 - (D) 3
- 3. Eight drops of water of same size are falling through air with terminal velocity of 10 m/sec. If the eight drops combine to form a single drop what will be the new terminal velocity?
 - (A) 40 m/s
 - (B) 42 m/s
 - (C) 45m/s
 - (D) 42cm/s

Page: 3 of 8

- 4. The diameter of the orbit of a planet round the Sun is 30 times the diameter of the Earth's orbit round the Sun; both the orbits are assumed to be circular. The time of revolution of that planate about the sun is
 - (A) 170 Year (nearly)
 - (B) 164 Year (nearly)
 - (C) 185 Year (nearly)
 - (D) 183 Year (nearly)
- 5. The eigen values of the matrix representing the following pair of linear equations x+iy=0 and ix + y = 0 are
 - (A) 1 + i, 1 + i
 - (B) 1-i, 1-i
 - (C) 1, i
 - (D) 1+i, 1-i
- 6. Two masses constrained to move on a horizontal plane collided with each other. Given m_1 = 85g , m_2 = 200g, u_1 = 6.48 cm/s , u_2 = -6.78 cm/s. The velocity of centre of mass would be
 - (A) 2.01 cm/s
 - (B) 2.01 m/s
 - (C) 2.82 m/s
 - (D) 2.82 cm/s
- 7. Given surface tension of soap solution is 20×10^{-3} N/m and the radius of soap bubble is 3×10^{-3} m. Calculate the surface energy.
 - (A) 22.62×10^{-7} Joule
 - (B) 22.62×10^{-5} Joule
 - (C) 20.04×10^{-5} Joule
 - (D) 20.04×10^{-7} Joule

- 8. The acceptable value of Poisson ratio (σ) for an elastic body may be
 - (A) 0.6
 - (B) 2.3
 - (C) 1.2
 - (D) 0.4

9.
$$A = \begin{bmatrix} 2 & 4 & 1 \\ 3 & 7 & 2 \\ 0 & 1 & 3 \end{bmatrix}$$
; $T_r A = ?$

- (A) 10
- (B) 11
- (C) 12
- (D) 13
- 10. Consider a particle of mass 'm' following a trajectory given by $x = x_0 \cos \omega_1 t$ and $y = y_0 \sin \omega_2 t$, where x_0, y_0, ω_1 and ω_2 constants of appropriate dimensions. The nature of the force will be central.
 - (A) only if $\omega_1 = \omega_2$
 - (B) only if $\omega_1 = \omega_2$ and $x_0 = y_0$
 - (C) only if $\omega_1 \neq \omega_2$ and $x_0 = y_0$
 - (D) only if $\omega_1 = 2\omega_2$

Page: 5 of 8

2020

PHYSICS (Honours)

Paper Code: I - B [New Syllabus]

Full Marks: 55 Time: Three Hours Thirty Minutes

The figures in the margin indicate full marks.

Answer five questions taking at least one from each group.

Group - A

[Mathematical Methods]

- 1. (a) Find the unit tangent vector to any point on the curve $x = t^2 + 1$, y = 4t 3, $z = 2t^2 6t$. Determine the unit tangent at the point where t = 2.
 - (b) If A has a constant magnitude and $\left| \frac{d\vec{A}}{dt} \right| \neq 0$, show that \vec{A} and $\frac{d\vec{A}}{dt}$ are mutually perpendicular.
 - (c) Discuss in few words about the geometrical interpretation of "gradient of a scalar".
 - (d) Show that $\vec{\nabla} \cdot (r^n \vec{r}) = (n+3)r^n$ 4+2+2+3
- 2. (a) Verify Stoke's theorem for vector field $\vec{A} = y\hat{i} x\hat{j}$ for a circle of radius 1 unit with centre at the origin in x y plane.
 - (b) Find the Fourier series for f(x) = x in the closed interval $(-\pi, \pi)$.

Page: 6 of 8

- (c) Two cards are selected at random from 10 cards, numbered 1 to 10. If the two cards are drawn together, find the probability that the sum is odd. 4+4+3
- 3. (a) Prove that the eigenvalues of a Hermitian matrix are real.
 - (b) If A is a non-singular matrix, show that eigenvalues of A^{-1} are reciprocals of those of A and every eigenvector of A is also an eigenvector of A^{-1} .
 - (c) Prove the recurrence relation : $H_{n+1}(x) = 2x H_n(x) 2nH_{n-1}(x)$; where, H denotes the Hermite polynomial. 3+4+4

Group - B

[Mechanics]

- 4. (a) A particle is moving along a curve in a plane. Using plane polar co-ordinate (r, θ) derive the expression for radial and transverse component of velocity and acceleration.
 - (b) The polar co-ordinates of a point are $(r, \theta, \phi) = (8, 30^{\circ}, 45^{\circ})$. Find the Cartesian co-ordinates of that point.
- 5. (a) Establish the differential equation of motion of a particle under a central force system.
 - (b) If a planet suddenly stopped moving along its circular orbit, show that it would fall into the sun at a time which is $\frac{\sqrt{2}}{8}$ times its time period. 7+4
- 6. (a) Derive the expression for Coriolis force due to earth's rotation.
 - (b) Calculate the magnitude and direction of Coriolis acceleration of a rocket moving vertically upward with a velocity of $\frac{2}{\sqrt{3}}$ km/s at 30°S latitude.

7+4

Page: 7 of 8

Group - C

[General Properties of Matter]

- 7. (a) Show that for a homogeneous isotropic medium $Y = 2\eta(1+\sigma)$; where the symbols have their usual meaning.
 - (b) Show that when a solid cylinder is twisted, the torsional couple per unit angular twist is $\frac{\pi \eta r^4}{2l}$, where the symbols are of usual meaning. What will be the form of couple if we consider a hollow cylinder? 5+6
- 8. (a) Derive an expression for the excess pressure acting inside a curved liquid membrane.
 - (b) What do you mean by streamline flow of a liquid?
 - (c) In the Poiseuille's experiment the following observations were made: volume of water collected in 5 minutes = 50 c.c.; head of water = 0.5 m; length of capillary tube = 0.602 m and radius of capillary tube = $0.52 \times 10^{-3} \text{ m}$. Calculate the co-efficient of viscosity of water. 5+2+4

Page: 8 of 8

2020

PHYSICS (Honours)

Paper Code: II - A & B
[New Syllabus]

Important Instructions for Multiple Choice Question (MCQ)

• Write Subject Name and Code, Registration number, Session and Roll number in the space provided on the Answer Script.

Example: Such as for Paper III-A (MCQ) and III-B (Descriptive).

Subject Code : III A & B Subject Name :

 Candidates are required to attempt all questions (MCQ). Below each question, four alternatives are given [i.e. (A), (B), (C), (D)]. Only one of these alternatives is 'CORRECT' answer. The candidate has to write the Correct Alternative [i.e. (A)/(B)/(C)/(D)] against each Question No. in the Answer Script.

Example — If alternative A of 1 is correct, then write : 1. - A

There is no negative marking for wrong answer.

Page : 1 of 7

মাল্টিপল চয়েস প্রশ্নের (MCQ) জন্য জরুরী নির্দেশাবলী

•	উত্তরপত্রে	নিৰ্দেশিত	স্থানে	বিষয়ের	(Subject)	নাম	এবং	কোড,	রেজিস্ট্রেশন	নম্বর,	সেশন
	এক রোল										

উদাহরণ — যেমন Paper III-A (MCQ) এবং III-B (Descriptive)। Subject Code : III A & B

Subject Name :

 পরীক্ষার্থীদের সবগুলি প্রশ্নের (MCQ) উত্তর দিতে হবে। প্রতিটি প্রশ্নে চারটি করে সম্ভাব্য উত্তর, যথাক্রমে (A), (B), (C) এবং (D) করে দেওয়া আছে। পরীক্ষার্থীকে তার উত্তরের স্বপক্ষে (A)/(B)/(C)/(D) সঠিক বিকল্পটিকে প্রশ্ন নম্বর উল্লেখসহ উত্তরপত্রে লিখতে হবে।

উদাহরণ — যদি 1 নম্বর প্রশ্নের সঠিক উত্তর A হয় তবে লিখতে হবে : 1. — A

ভুল উত্তরের জন্য কোন নেগেটিভ মার্কিং নেই।

Page : 2 of 7

Paper Code: II - A

Full Marks: 15 Time: Thirty Minutes

Answer all the Questions.

Choose the Correct Answer.

Each Question Carries 1.5 Marks.

- 1. Which of the following is the fastest process of heat transfer?
 - (A) Conduction
 - (B) Convection
 - (C) Radiation
 - (D) all three
- 2. A cooking pot is coated black because
 - (A) Black substances absorb more heat
 - (B) Black substances reflect more heat
 - (C) Black surfaces radiate more heats
 - (D) Above all
- 3. According to van der Waals' gas equation, critical co-efficient $\frac{RT_C}{P_CV_C}$ is equal to
 - (A) 8
 - (B) 8.3
 - (C) 8/3
 - (D) 1

Page: 3 of 7

4.	Viscosity of gas is due to the transport of —
	(A) Velocity
	(B) Energy
	(C) Mass
	(D) Momentum
5.	Which of the following is not an applications of Ultrasonic waves?
	(A) For measuring the depth of ocean
	(B) In sterilizing of a liquid
	(C) In ultrasonography
	(D) In sterilizing a needle
6.	Name the characteristic of the sound which distinguishes a sharp sound from a grave or dull sound?
	(A) Intensity
	(B) Echo
	(C) Pitch
	(D) Resonance
7.	Which of the following is blocked by a Capacitor?
	(A) A.C
	(B) D.C
	(C) Both A.C and D.C
	(D) Neither A.C nor D.C

8. Two spheres of the same radius, one solid and the other hollow, are ch to the same potential. Which will have more charge?							
	(A) Solid sphere						
	(B) Hollow sphere						
	(C) Both will have equal charge						
	(D) None of these						
9.	9. The potential energy of an electric dipole is maximum when it makes an ang θ with electric field. The value of θ is —						
	(A) $\pi/2$						
	(B) π						
	(C) zero						
	(D) 2π						
10. The Gaussian surface for a line charge will be —							
	(A) Sphere						
	(B) Cylinder						
	(C) Cube						
	(D) Cuboid						

2020

PHYSICS (Honours)

Paper Code: II - B
[New Syllabus]

Full Marks: 55 Time: Three Hours Thirty Minutes

The figures in the margin indicate full marks.

Answer *five* questions taking at least *one* from each group.

Group - A

[Heat]

- 1. State and explain Dulong-Petit's law. Deduce the expressions for the critical constants of a gas obeying van der Walls' equation of state. 5+6
- 2. Write down the basic postulates of the kinetic theory of gases. From these postulates, establish the relation $k = \eta C_v$, where the symbols have their usual meanings.
- 3. State and explain Kirchhoff's law of radiation. Show that the energy density of radiation inside a uniformly heated enclosure is given by $U = (4\pi K)/C$, terms being usual.

Group - B

[Sound]

4. Write down the equation of motion of a particle executing one-dimensional forced vibration and explain each term. Solve this equation for the steady state. What are transient beats?

3+8

Page: 6 of 7

- 5. (a) Deduce an expression for the velocity of transverse waves travelling along a stretched string.
 - (b) Derive an expression for the general displacement of a plucked string.

5+6

Group - C

[Electricity - I]

- 6. (a) Obtain the multipole expansion of an arbitrary charge distribution by indicating clearly monopole, dipole and quadrupole term.
 - (b) Using Biot-Savart law, find an expression for the magnetic field at an axial point of a coil carrying a steady current.

 6+5
- 7. (a) A uniformly charged sphere of radius *R* carries a total charge *Q*. Calculate the electrostatic self energy of the sphere.
 - (b) State Gauss' theorem in electrostatics and obtain its differential form.

5+6

Page: 7 of 7