P－I（ $\mathbf{1}+\mathrm{l}+\mathrm{l} \mathbf{1} \mathrm{H} / \mathbf{1 8} \mathbf{(N)}$

2018

PHYSICS（Honours）

Paper Code：I－A

［New Syllabus］
Time ：Thirty Minutes

Important Instructions for OMR Sheet

1．Write／Fill your correct Subject Name，Sulyect Code \＆Paper Code in the space provided on the top of the OMR sheet（Subject Codes are given on the back of the OMR sheet \＆Paper Code in the （Quction Paper．）－

2．Write／Fill your Name，Roll number，Registration tumber，Regn． Session，Exam Date and Exam Session in the space provided on the OMR Sheet．

3．Ench item has four alternative responses marked（A），（B），（C）and（D）． You have to darken the circle as indicated below on the correck resporse against each item．
4．Your responses to the items are to be indicated in the OMR Sheel given inside the Paper Booklet anly．If you mark at any place other than in the circle in the OMR Sheet，it will not be evaluated．

5．If you write your Phone Nurnber in the OMR Sheet or use abusive language or employ any other unfair means，you will render yourself liable to disqualification．
6．You have to return the OMM Sheet to the invigilators at the end of the examination compulsorily and must not carry it with you oulside

：OMR Shtet ज্রে निए
 बबढ़匕 रुく।

 बत्त巨 るこ।

 ना।
－

Answer aft the questions in OMR sheet

Choose the correct answer.

Fach question carrics $1 \frac{1}{2}$ marks.

1. Two vectors \vec{A} and \vec{B} satisfy the relution $|\vec{A}+\vec{B}|=|\vec{A}-\vec{B}|$. Neilher of thenh is a null vector. The angle betwsen then is -
(A) 0°
(B) 90°
(C) 135°
(D) 180°
2. If the linear momenturn of a paricle moving in a forte field at time f is $\overline{\boldsymbol{p}}=2 \hat{\imath}+\left(t^{2}+1\right) \hat{j}+4 t^{2} \hat{k}$, the force acting on the partitle it $t=0$ is -
(A) 2010
(13) \hat{j}
(C) $2 \hat{i}$
(D) $2 \hat{i}+2 \hat{j}+4 \hat{k}$
3. The angle between the body diagonals of a unit cube is -
(A) 45°
(B) 90°
(C) $\cos ^{-1}\left(\frac{2}{3}\right) \simeq 48.7^{\circ}$
(D) $\cos ^{-1}\left(\frac{1}{3}\right) \simeq 70.53^{\circ}$
4. C is a closed curve enclosine an area S in the $x \cdot y$ plane. \ddot{A} is a vector piven by $\bar{A}=-\dot{i} y+\hat{j} \dot{x}$. The line interexad $\oint_{c} \vec{A} \cdot d \vec{r}$ will lave a value -
(A) $2 S$
(B) 5
(C) 35
(D) zeru
S. A solid sphere of tadios ' k ' rolls down an inclined planc from rest. If' the vertical hejght of the incline be ' h ', the velocity of the sphere al the bothom of the incline will be--
(A) $\sqrt{2 g h}$
(B) $\left(\frac{4}{3} g h\right)^{1 / 2}$.
(C) $\left(\frac{10}{7} g\right)^{1 / 2}$
(D) $\left(\frac{2}{9} g h\right)^{1 / 2}$
5. Three particles of masses $4 \mathrm{gm}, 3 \mathrm{gm}$ and 2 gm are at the points $(2,0,-b)$, $(1,1,3)$ and $(3,-1,0)$ respecitively. The co-ordinates of their uentre of mass (c.m.) ate -
(A) $\left(\frac{1}{9}, \frac{5}{9},-\frac{17}{9}\right)$
(B) $\left(\frac{17}{9}, \frac{1}{9}, \frac{5}{9}\right)$
(C) $\left(\frac{1}{9}, \frac{17}{9}, \frac{5}{9}\right)$
(D) $\left(\frac{5}{9}, \frac{1}{9}, \frac{17}{9}\right)$
6. The diameter of the orbit of the planet Neptune round the sun is 30 times that of the eearth's orlist, both orbits being assumed to be circular. The time period of revolution of Nepture tound the sun is --
(A) 164.3 earth years (approx.)
(B) 52 earth years (approx.)
(C) 90 earth ycars (mprox.)
(D) 150 carth years (approx.)
7. The excess pressure inside a soap hubble of radius 8.0 nur balaness 2.0 mm colund of oil of specific gravity 0.8. The surfice tension of soap solution is -
(A) $12.54 \times 10^{-2} \mathrm{Nm}^{-1}$
(B) $62.72 \times 10^{-3} \mathrm{Nm}^{-1}$
(C) $12.54 \times 10^{-3} \mathrm{Nm}^{-1}$
(D) $31.36 \times 10^{3} \mathrm{Nm}^{-1}$
8. A tlat plate of area $2 \times 10^{-3} \mathrm{~m}^{2}$ is separated by a layer of glycerine 2.0 mm thick from a lugge stutionary plate. If the coefficient of viscosity of glycxine be 2.0 decapoise, the fore required to pull the first plate with a milom velocity of $1.5 \times 10^{-2} \mathrm{~ms}^{-1}$ on the oit sorface is -
(A) 0.3 N
(B) 3.0 N
(C) 0.03 N
(D) 30.0 N
9. A cube of a metal of side 10.0 cm is subjected to a shearing steess of $10^{4} \mathrm{Nm}^{-2}$. The top surface of the cube is displacoud by 0.01 cm with respect to the bxatom The mextulus of rigidity of the metal is -
(A) $10^{7} \mathrm{Nm}^{-2}$
(B) $10^{6} \mathrm{Nm}^{-2}$
(C) $10^{5} \mathrm{Nm}^{-2}$
(D) $10^{4} \mathrm{Nm}^{-2}$

2018

PHYSICS (Honours)
Paper Code: I-B
[New Syllabusl
Full Marks: 55
Time: Three FIours Tlith Mirutes
The figures in the margin indecate full marks.
Answer five questions takinge at least one fromeach group.

Group - A

[Mathemalical Methods]

1. (a) The scelar triple product of three vectots is a pseudnscalar. Justify. 2
(b) If \vec{A} has a constant magritude and $\left|\frac{d \vec{A}}{d J}\right| \neq 0$, show thet \vec{A} and $\frac{d \bar{A}}{d t}$ are mutually perpercictal:
(c) A vector \vec{r} salisfies the equations:

$$
\begin{aligned}
& \vec{r} \times \vec{b}=\vec{c} \times \vec{d} \text { and } \vec{r} \cdot \vec{a}=0, \text { but } \vec{a} \cdot \vec{b} \neq 0 . \\
& \text { Prove that } \vec{r}=\frac{(\vec{b} \times \vec{c}) \times \vec{a}}{\vec{u} \cdot \dot{b}}
\end{aligned}
$$

(d) Evaluate the integral $\oint_{C}\left[\left(x y-x^{2}\right) d x+x^{2} y d y\right]$ aver the trinngle bounded by the lines $y=0, x=1$ and $y=x$ and hence verify Green's theorem in the plane.
2. (a) Find $\overline{\boldsymbol{f}} \cdot \vec{d} \cdot \vec{d}$ ouet a circular path of tadius R, centred at the origin in the: $x y$-plane, where $\vec{A}=a y \hat{x}+b x \dot{y}$ (a and b being constints).
(b) A periodic function $f(x)$ is giten by

$$
f(x)=\left\{\begin{array}{ll}
0, & \text { for }
\end{array}-\pi<x<0, \begin{array}{ll}
x, & \text { for }
\end{array} 0<x<\pi\right.
$$

It is also given that $f(x+2 \pi)=f(x)$. Expand $f(x)$ in a Fourier series. ह lence, sthow that $1 \div \frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots=\frac{\pi^{2}}{8}$
(c) Two cards are selected at fandom from 10 cards, numbered I to 10. If the tro cards are drawn togecher, find the probability that the sum is ock.
3. (a) The following rewrorence relation for a Legende polynomiad $P_{n}(x)$ is true:
$n P_{n}(x)=(2 n-1) x P_{n-1}(x)-(n-1) P_{n \cdot 2}(x)$. Using the athowe relation, prove that $P_{n}^{r}-x P_{n-L}^{r}=n P_{\pi-1}$.
(b) Prove that the cigenvalues of a Elemitian matrix are rad.
(c) If A is a thon-singular matrix, show that the eigenvalues of A^{-1} arc rtiprovals of those of A and every eigenvertor of A is ulso the cigenvestor of A^{-1}.

Group - B

[Mechanics]

4. (a) For a planar motion of a particle in the $x y-p \mid a n e, x=r \cos \theta$ and $y=r \sin \theta$, where the terms bear usual significance. Prove that

$$
\begin{equation*}
\dot{r}=\frac{\dot{x}+y \dot{y}}{r} \text { and } r \dot{\theta}=\frac{x \dot{y}-y \dot{x}}{r} \tag{4}
\end{equation*}
$$

(b) A frame S^{\prime} is moving with a velocity $5 \dot{j}^{*}+7 \hat{j}^{0} \mathrm{~ms}^{-1}$ relative to an ingrishl fame S. A puticle is moving with a welocity $(t+5) \hat{i}+9 \hat{j} \mathrm{~ms}^{-1}$ with nespoct to S. Find the magnitude and direction of the acceleration of the particle in the frames.
(c) Define a central forme

The path of a particle of mitss ' m ', moving under the influence of a cental force, in plane polar co-ardinates, is given by $r=r_{0} e^{t \theta}$, where r_{0} and k are positive contilants of appropriate dimensions. The angular momentum of the praticle is \tilde{L} and its total cnergy (E) is zero. Pouve that the potenlial energy $V(r)$ of the particle is given by $V(r)=-\frac{\left(k^{2}+1\right) L^{2}}{2 m r^{2}}$.
5. (a) Define radiut of gyration of a mating boxly about the axis of rotation

Using spherical polar co-sudinates, find the moment of inertia of a solid sphere about a diameter.
$1+4$
(b) A uniferm chain of length ' c ' tests on a frictionless gable so that a length ' b ' dargles over the table. Prove that the time taken by the chain to slide oft the table is $t_{0}=\sqrt{\frac{a}{g}} \ln \left(\frac{a+\sqrt{a^{2}-b^{2}}}{b}\right)$.
6. (a) lhe total force on a systern of partieles is zero while the thet torque is non-zerc. Show that ahe net torque lans the same value in auy co-prdinale sysicm.
(b) Fir a general vecior $\dot{\mathcal{O}}$, show that
$\left(\frac{d \vec{G}}{d t}\right)_{\text {frxa }}=\left(\frac{d \vec{G}}{d t}\right)_{\text {mxation }}+\vec{W} \times\left.\vec{G}\right|_{\text {todulion }}$. tertrs being ustarl.
Hence, ohtain exprestians for centrifugal und moriolis accethmaions.

Group-C

[Gencral Properties of Mutter]

7. (a) Define torsional rigidity of a cylinder. Deduce an expression for the 1orsinnal rigidity of a butlow cylither of Iength $\because 7$ and intemal and extertal radii R_{1} and R_{1} acspectively. The inodules of rigidity of the mutcrial is ' n '.
(b) A sessile drop of thicktess H rests on a horizontad surface. Show thit the surtace tension of the liquid is given by $S=\frac{\rho g f^{2}}{2(1+\cos \theta)}$, whtre " θ ' is the arule of corlact and other terris are willl.
8. (a) Dhine ars expession for the extess pressure acting inside a curved liquid memitrane.
(b) If the rate of clayge of surface energy E of a liquid with lemperature is proportional to the absolute ternexalure T, show that $\left(\frac{d E}{d \Gamma}+\frac{d S}{d T}\right)$ is a consiabt and S is a gupadratic function of tenpenture, whene S is the suriace tetision of the linuid.
(c) Water flows steadily through a composite system consisting of two namesw tubes ' A ' and ' B ' joint end to end. ' A ' lass a length 25 cm and radius 0.03 cm , wite ' B ' tube fias a lengh 10 cm and radius 0.04 cm If the rotal pressure difference betwien the extreme ends be 16 em of water, calculate the pressure difference berwten ends of tube ' A '.

P－1（ $1+1+\mathrm{I}$ ）H／18 $\{\mathrm{N}$ ）

PHYSICS（Honours）

Paper Code；II－A

［New Syllabus］
livne ：17irly Mintates

Important Instructions for OMR Sheet

1．Write／Fill your correct Subject Name，Subject Code \＆Paper Code in the space provided on the bop of the OMR sheet（Subject Codes are given on the back of the OMR sheet \＆Paper Code in the Question Paper．）
2．White f Fill your Narne，Roll number，Registration number，Regn Session，Exam Datc and Exam Session in the space provided on the OMR Sheet
3．Eack itent Yas four altemative esponses marked（A），（B），（C）and（D）． You have to darken the sirde as indicated betow on the correct mesponse against each item．
4．Your responses to the items are to be indicated in the OMR Sheet given inside the Paper Bookiet only．It yous mark at any place other than in the circle in the OMR Sheet，it will not be cvaluated．

5．Wr you write your Phome Number in the OMR Shect or use abusjve language or employ any other unfair means，you will revder yourself liable to disqualification

6．You have to return the OMR Shect to the Invijilators at the and of the examination compulsonily and must not carry it with you outside the Examination Hal．

7．Use only Blue／Black Ball point pen．Use of any mobile phone， calculator or log table etc，in examination hail，is prohibiled．

 बन्तर है：

©। मी
 ना।

 छुना एइड़ी श्राकरू।

 OMJ Sheel fit आना शत्व ना।

Ansuier alf the quertions in OMR sheet.
Choose the currect answer.
Each question carries $1 \frac{1}{2}$ mark 5 .

1. For an ideal gas, $\gamma\left(=\frac{C_{p}}{C_{Y}}\right)$ has a value 1.40 . The mumber of degrees of Gredom of each molccule of the gas is -
(A) Three
(B) Fou
(C) Fiuc
(D) Six
2. The temperature at which oxygell molecules will have the same rars. speed as that of hyctrogen mofecules at $-100^{\circ} \mathrm{C}$ is -
(A) $2495^{\circ} \mathrm{C}$
(B) $2768^{\circ} \mathrm{C}$
(C) $-6.25^{\circ} \mathrm{C}$
(D) $-100^{\circ} \mathrm{C}$
3. Given : Bolturann's constant $k=1.38 \times 10^{-23} \mathrm{IK}^{-1}$. The number of ntolecule per m^{3} of a gas at a temperature of $27^{\circ} \mathrm{C}$ and pressure $10^{5} \mathrm{~N} / \mathrm{m}^{2}$ is -
(A) 2.42×10^{18}
(B) 2.42×10^{24}
(C) 2.42×10^{23}
(D) None of the above
4. Twe clased pipes of lengths 1.1 m and 1.175 m are sounded together at the fundamental mades. If the speed of sound int air is $340 \mathrm{~ms}^{\circ}$, the number of beats proveluced per second is ncarly -
(A) 8
(B) 7
(C) 6
(I)) 5
5. A tension of 245 N is applied to a wifom repre hwing mass $0.05 \mathrm{~kg} . \mathrm{m}^{-1}$, th iength is 30 rn . A transverse pulse is cfeated at the free end. The time it will take to reach the theor end is nearly -
(A) 0.43 second
(B) 0.85 second
(C) 0.61 sexund
(D) 1.28 second
6. The efectric fictd in a cerain fegion of space is given by $\vec{F}=$ by \bar{j}, where ib is a constant and \vec{E} and y have been expressed in S l units, A culx of sidc ${ }^{\prime} a$ ' m is placed in the field with one cornert al the otigin. Then the charge (q) inside the cube is -
(A) $E_{0} a b^{3}$ coulomb
(B) $\dot{\epsilon}_{0} a^{2} b^{2}$ coulomb
(C) $\epsilon_{0} b^{4}$ coulomb
(D) $\epsilon_{0} b a^{3}$ coulomb
7. Why is a mesistance coil (as used in a ressistanec box) doubled on iself before winding?
(A) To eliminale any eroor due to non-unifornity in dianneter
(B) To make it nor-inductive
(C) To meike Joule hearing a minimum
(D) To make it an equivaleth capacitor
8. In the region $r>1$, the dielectric displacement $\bar{D}=\left(\frac{10}{r^{2}}\right) \hat{r}$ in splaterital co-ordinates. The corresponding wolume densisy (ρ) of free charge is -
(A) $p \times 10$ coulombim ${ }^{3}$
(B) $\rho>10$ coulomh $/ \mathrm{m}^{3}$
(C) $p=0$
(D) $\rho<0$ cuubmb/ $/ \mathrm{m}^{3}$

Turn Over
9. The electric potential at a point is given by $\phi=x^{2} y+2 z$. The maskitude of the eleclric ficld intensisty at the print $(2,1,2)$ is-
(A) 4 knits
(B) 6 units
(C) 8 uniu
(D) 10 unuts
10. A lung thin wire carrics a eurent of is amp. Taking $\mu_{0}=4 \pi \times 10^{-7} \mathrm{Hm}^{-1}$, the mugnitude of the magretic field at a distance of 1.0 cm would be -
(A) 3×10^{-4} tesla
(B) $3 \times 10^{-6} \mathrm{I}$ 19519
(C) 6×10^{-4} tesla
(D) 3×10^{7} tesle

PHYSICS (Honours)

Paper Code : 11-B

[New Syllabus]

Full Marks : 55

Time : Three Hours Thirty Minutes

The fogures in the morgin inaficate full mayks.

Answer five questions taking of least one from cach grump.
Group-A
[Hcat]

1. (a) Derive ath expression for the pressure of an ideal gas in terms of its density and mean squared speed of its molecules. From the shove expression obtain Dalton's law of pritify pressure.
(b) Deftre mean free padi of gas molecules. Deduce the survival equation : $N_{x}=N e^{-x_{i} \lambda}$, where the terms are usual.
(c) A struncr of 1000 gaz molecules, eath originally moving with the sime velocity, traverges a distance equal to the mean free path. Calculate the number of molcatles which will remain unceflecter.
2. (a) What is Brownian motion 2 Prom finstein's theocy of the cranslational Bowwian motian, find in expression for the coefficient of diffusion for the irteyular motion of the suspented parlicles.
$1+3$
(b) From the standpoint of kinetic theory of gascs, deduce the relatiun: $\eta=\frac{1}{3} \rho \bar{\prime} \lambda$, tems being usiall. Discuss the effect of temperaure of the give on ' η ',

$$
5+2
$$

Turn Oncr
3. (a) State and deduce Dhulong-Pctit's law.
(b) Desture experssions for the eritical onntiants of a gas obeying van der Wraals' equitition of state.
(c) Calculate the van der Whads' constants for dry air, given $T_{C}=132 k$, $P_{C}=5 \overline{7} .2 \mathrm{~atm}, R=82.07 \mathrm{~cm}^{3}$ atm mole $\mathrm{a}^{-1} \mathrm{~K}^{-1}$.

Group - D

[Sound]
4. (a) Show that the function $f(u t-x)$ represents a plane progressive wave proparsaling in the positive x-finection.
(t) Stow that the fractional change in the natiral froquency of a dauped simple harmonic oscillutor is $\frac{\mathrm{I}}{8 Q^{2}}$, uhtere Q is the quality factor. 3
(c) The second himmonic of ale note emilted from a bar, free at both ends, coinsides with the thind hamonie of the mote emited frim anouluer but, clantped at one end and fice at the oriber. Find the ratio of the imgthis of the two hats, assuming that both the hars execute longitudinat vibutions.
(d) What are the requiraments of a gond audinaians? Define optimuth feverferation time in a "live" roxm.
5. (a) A string of lenget ' Γ is strectiod along sf-axis, It is struck at a proint at a distance "ar flom one end with a light humner of width Δx. Deduce an expression for the general displacement $y(x, r)$ of the string by Fourier method.

Why is the ate emithod finm a struck-string instrument more melodious than that emited from a plucked-scring instrurtuen?
(b) Define phase welacity and group velocity of a group of waves travelling. in a dispersive medium and obtain a telation betwern those two velucities. $\quad 2+3$

Grnup - C

[Electricity - []
6. (a) State Grubsis's hnorem in ehatroxtatics and obtain ili differential form.
(b) Skww that the force experienced by an slectric dipole of moment \vec{p} kept in a non-uniform electric field \bar{E} is given by $\vec{F}=(\bar{p} \cdot \overrightarrow{\mathrm{v}}) \overline{\mathrm{E}}$.
(c) A long charged cylinder of radius ' a ' hats a volume pharge density $\rho=y r$, uhere y is a constant and r is the distance from the exis of the cylinder. Show that the clectric fiedd is given by

$$
\begin{aligned}
\vec{E}(r) & =\frac{r^{2}}{3 \epsilon_{0}} \hat{r} \text { for } r<a, \text { and } \\
& -\frac{\gamma \Delta a^{3}}{3 \epsilon_{\pi} r} f \text { for } r<a
\end{aligned}
$$

7. (a) A point charge ' q ' is placed al a distance ' f ' from the centre of a grounded conducting sphere of radius ' a ' $(a<f)$. Calculate the magnitude and Iocation of thc image charge. Find also the potentiai and tield at an external print, Hence calculate the surfiace density of induced charge on the splene. $\quad 3+2+3$
(b) At the plane interface between two dichectrics with $K_{r}=3$ and $K_{2}=2$, electric field $E_{1} \times 1200 \mathrm{Fm}^{-1}$ in the upper medium mades an angle $\theta_{1}=45^{\circ}$ with the normal to the interface (see figure). Find F_{1} and θ_{2}.

Ther Orer
8. (a) Using Biot-Savart law, find an expression for the magnetic field al an axial poin of a circular coil carryireg a steady curtent.
(h) Uneduce the equation of continuity : $\overrightarrow{\mathrm{V}} \cdot \overrightarrow{\mathrm{j}}=-\hat{\mathrm{o}} / \mathrm{ot}$, terms being wsud. 3
(c) Stitr Ampere's circuilad theorem and oblain its difterential fiom.
(d) A copper wire is canying a curtent of 2.6 andp and has a arixs-serional arca of $10^{-6} \mathrm{~m}^{2}$. If the number of fere elactrons pert m^{1} be $8 \times 10^{+3}$, celculate the curcnt dersity and the average drift velocity. Jake $\varepsilon=1.6 \times 10^{-19}$ eculomb. 2

