P－II（ $\mathbf{1}+1+1 \mathbf{1} \mathrm{IL} / 18$（ N ）

2018

PHYSICS（Honours）

Paper Code：IV－A

［New Syllabus］
Tirne ：Thirly Minutes

Important Instructions for OMR Sheet

1．Wite／Fill your sorrect Subject Name，Subject Code t Paper Code in the space provided on the top of the OMR sheet（Subject Codes are given on the back of the OMIR sheet \＆Paper Code in the Question Paper．）
2．Write／Fill your Name，Roll number，Registration number，Regro． Session，Exam Date and Exam Session in the space provided on the OMR Shret．
3．Each item has four alternative responses marked（A），（B），（C）and（D）． You have to darken the circle as indicaled below on the correct response ayairst each item．
4．Your responses to the jems are to be indicated in the OMR Sheet given inside the P＇aper Buoklet only．If you mark at any place other than in the circle in the OMR Sheet，it will not be evaluated．

5．If you write your Phome Number in the OMR Sheet or use abusive language or employ any other unfair means，you will render younself liable to disqualification．
6．You have to return the OMR Sheet to the invigilators at the end of the exarrination compulsorily and mest not canry it with you ousside the Fixamination Hall．
7．Use only Blue／Black Ball point pen．Use of any mobile phone， calculator or log table etc．in examination ball is prohibited．

\therefore OMik Shect बlis निर्मा⿵人

 एडाड ददय

 Fil

 OMR Sheet 房 आना घात्व ना।

Answer cll the questions in OMR sheet.
Choose the correct answet.
Each question carries $1 \frac{1}{2}$ marks.

1. A convex tens of focal length 24 cm (refractive index of the material of the tens is 1.50) is totally immersed in water (refractive index $=1.33$). The fixal lenglt of the kels in water will be -
(A) 24.0 cm
(B) 47.0 cm (approx.)
(C) 70.5 cm (approx.)
(D) 93.75 cm (approx.)
2. The distance between two points in a medium is 4.0 cm , while the corresponding aptical path betwen thase rmo points is 6.0 cml Then, the sperd of light is the said medium is -
(A) $10^{3} \mathrm{~ms}^{-1}$
(B) $2 \times 10^{8} \mathrm{~ms}^{-1}$
(C) $3 \times 1 w^{x} \mathrm{~ms}^{-1}$
(D) $4 \times 10^{4} \mathrm{~ms}^{-1}$
3. The object glass of a telescope is an achromat of focal lenght +90 cm . If the dispensive powers of the two component Ienses are 0.024 and 0.036 , their foxal kengiths (with proper sign) are -
(A) +30 cm and -45 cm
(B) +45 cm and -30 cm
(C) +90 cm and -45 cm
(D) +10 cm and -15 cm
4. Visible light rateges from $4.0 \times 10^{14} \mathrm{~Hz}$ to $7.5 \times 10^{14} \mathrm{~Hz}$. Taking $\mathrm{C}=3 \times 10^{8} \mathrm{~ms}^{-1}$. the caberance lengith for this white light would te -
(A) $8.58 \times 10^{-5} \mathrm{~m}$
(B) 8.58×10^{-6} rr
(C) $8.5 B \times 10^{-2} \mathrm{~m}$
(D) None of the above
5. A biprism is placed 5.0 cm fom a slit illuminated by light of mavelength 600 nm . The fingc-width on a screen plated al a distance of 75.0 cm fiom the biprism is $9.6 \times 10^{-2} \mathrm{~cm}$. The distance belween the twa coherent sources is -.
(A) 0.05 cm
(B) 0.06 cm
(C) 0.04 cm
(D) 0.047 cm
6. A plane diffaction grating has 2100 lines per crn. Light of wavelength 500 nm is incident nonnally on the grating and urdergoes dilfiaction. Twe highest orcker of principal naximumn visible in the diffaction puttem is -
(A) 4
(B) 5
(C) 10
(D) 9
7. The Fraunhofer diffraction patiern of a single slit (ot width $1.2 \times\left(0^{-4} \mathrm{~cm}\right)$
 angular width of the cental hright maximem will te -
(A) 60°
(B) 30°
(C) 5°
(D) 0.5°
8. When operated between cut-off and saturation, a trausistor behaves like a -
(A) lincar amplificr
(D) variable resiscor
C) variab|e sapracitor
(D) switch
9. Consider a diode in series with a power supply or 5.0 V and a hord resistance R_{t} (see fiture). Assuming diode cutin volage to lee 0 .fiv and jorwhrd resistance $50 S_{2}$. the vatue of R_{1} fequired for the current thriugh the diode to be 10.0 ma, would he - .

(A) 440Ω
(B) 450Ω
(C) 390Ω
(D) 4908
10. In a transistor operating in CE mode, a conslant base curment of $20 \mu \mathrm{~A}$ flows. The collector curtent charlgesi from 3.0 mA bo 3.5 mA when the collealor enviter Yolkage changes from 6.0 V to I 2.0 V . The ourpul resistance of the transistor is -
(A) 12.0 kS
(B) $6.0 \mathrm{k} \Omega$
(C) 2.04Ω
(D) $12 \mathrm{k} \Omega$

$\mathrm{P} \cdot \mathrm{II}(\mathbf{1}+\mathbf{1}+1) \mathrm{H} / \mathrm{IB}(\mathrm{N})$

2018

PHYSICS (Honours)

Paper Code: IV-B

[New Syllabus]

Full Marks: 55

lime : Three: Hours Thirly Mibubes
The figures its the margin indicate full marks.
Answer five questions taking ar least one from each gromp.
Any kind of catculator nlay be used.

$$
\begin{gathered}
\text { Group - A } \\
\text { [Gcomelrical Opties] }
\end{gathered}
$$

1. (a) Using Fennin's principhes show that all the nays passing through one focur of an elliplic reflector pass chrough the other fows atier reflection.
(b) Show that for refeartion ut a concave spherical surtace (separating plassait mediunt, the distance of the objoct should be ereater that threes dimes the radive of curvature of the reftacting surfare for the image to be real. Take $n_{2 l a s 5}=1.50, \quad$,
(c) How would you conbine two prisms of differest matcrial so that the combination would produce deviation but me dispersien?

Apply the principhe to calculate the angle of the tlint glass prisis which, when combined with a coven glass prism of 19°, produces deviation but no dispersion. Find also the tolal deviation produced. Given ; n_{2}, n and n, are 1.523, 1.517 and I.S14 respectively for crotur glass and those for the flint glase are respectively 1.664, 1.650 and 1.644 .
$2+3$
2. (a) W'hat are the advantages of a Ramsdan's cyc-piece over a Huygens' eye-piece?
(b) Obtain an expession for the magnifying power of a manditying glass fire notrial visiom.
(c) A convex lens made up of a material of reftutive index 1.5 has radii of curvature 2.0 cm and -2.0 cm II Uhe thicknexs of the I ens is also 2.0 cm , find the system matrix and the positions of the fioul points fos measurod from the principal points).

Group - B

[Physical Optics]

3. (a) Compare the T.loyd's mirra and ue bipristu firinges.
(b) Explain the fomation of Nowton's rings. Prove that the dioneters of the dark lings are proportional to the square cool of natural numbers. Are the fringes localised or notr-localised?
$2+3+1$
(c) In Niewton's ring experiment, the radius of the loth dark ring is louruf to be 4.0 mm when there is air betwen the convex tens and the glass plate. However, wien air is replaced by a liguid, the radius of the ring strinks from 4.0 mm to 3.3 mun . Find the refiactive index of the liguid. -
4. (a) A plane wavefront of monoclornatic light urdergous dittination in a double slit. Auafyse the diltiaction patten observed. Whath do you mean by missing orders of spectroll lines?
(h) The atxuye dijlicxition pallem is otsered in the focad plates of a convex lens of focal iength 50,0 em. The wavelength of the incident light is $5(3)$ tum, The distance between the two maxima adjacent to the maximum of zero order is 0.5 con and the dلh order maximun is missing. Find lue widlh ate ench slit and لte distance tetween tueir centues.

4
5. (a) Compare the actions of a zone plate ound on minvex lens.
(b) Define dispersive power of a plane diftivetion grating. A grating which has 4000 lines per ten is used at normad incidence. Culculate the dispersive power of the grating in the 3rd order spectum in the wavelength region of 500 om rin $\quad 1+2$
(c) Discuss the workit principle of a Michelson's interferometer Under what conditions are cirsular and stright finges produced by it ? $3+2$
6. (a) What do you mean by antiredection couliniz? Dicuss the theny behind it
(b) What should be the thicknems of a non-reflecing layer to be deposited on glass surface somesponding to light of wavelengh 600 non? Refractive index of the layer is 1.35 .

2
(c) Stare Rayleigh's criterian of resolution of spected lines. The septration between the two headights of a car is 1.22 m . Calculate the preatest distance from which a nommal hotid eye can distinguish the two headlights. The diauncter of the eye-pupil is 5.0 mm and the vravelengtr of light is 500 nm
(d) Fxplain lle finmation of colvor in a thin film. 2

Group - C
 [Electronics - I]

7. \{a\} How is the depletion region fermed in a $p-$ - jureliur diole? Explain the variation of its uridth with biasing. The barrier potentisl across a $p-1$ jwntrion diode cannot be measured simply by placing a voltroteter acopss the diode terminals. Why ?
$2+1+1$
(b) The reverse saturation efurtent at $27,^{\circ} \mathrm{C}$ of a $\mathrm{F}^{-n} \mathrm{n}$ jurction Ge diode is 5.0 . 4 . Find the voltage to be applied across the junction to obtain a forsard current of 50.0 mA . Also calculate the static and dynamic resistarnce of the diode. Take the electronic charge (c) as 1.6×10^{-29} Coulomb and Boltzmanr's constan (k) as $138 \times 10^{-23} \mathrm{JK}^{-1}$.
(c) What is meant by load regulation by a Zener diode? Define percentage rcgulation
B. (a) What do you mean by the collector to base leakage curredt ($I_{\text {coo }}$) in a transistor?

The common-basc current gain in an $n-p \rightarrow n$ transistor is 0.98. If
 cursent of 2.0 mA . Assurne the formula you need
(b) Wlat is thermal runsway of a tatasistur? 2
(c) Convert the decinal number 2475 to a bexankeimed number.
(d) Pove the Boolcan identity: $(A+B)(\bar{A}+C)=A C+\bar{A} B$. 2
(c) Draw the circuit symbol of an XOR gate and wite down its truth table.

P-1I (1+1+1) H (L8 (N)

PHYSICS (Honours)

Paper Code : V-A

[New Syllabus]

Full Matk5: 15

Time: Thirly Minutes

Important Instructions for OMR Sheet

1. Write / Fill your correct Subject Name, Subject Code \& Paper Code in the space provided on the top of the OMR sheen (Subjiect Codes are given on the back of the OM1R shect \& Paper Code in the Question Гaper.)
2 Write / Fill your Name, Roll number, Reģistration number, Regn. Session, Exam Date and Exam 5usion in the space provided on the OMR Shlet.
2. Eath item has four atternative resporiens marked (A), (B). (C) and (D) You lave to darken the circle as indicated below on the correct risponse against eath itern.
3. Your responses to the items are to be indicated in the OMR Sheet given inside the Paper Booklet only. If you mark at any place wther than in the circe in the OMR Sheet, it will not be cvaluated.
4. If you wite your Phone Number In the OMR Shect or use abusive language or employ any other unfair meaus, you will render yourself liable to disqualification.
5. You have bo retutr the OMTR Sheet to the invigilators at the crd of the examination cumpulsorily and must not carry it with you outbide the Examination Etall.
6. Use only Elue/Black Ball point pen. Use of any mobile phone, calculator or log table etc. in examination hall, is prohibited.

2। OMR Sheer ज
 स्ड़बए इरुে।

 रुजाে হরে।

 제

 OMR Shect fo vixt गাबে नl।

Answier all the questions in OMR sheet.
Choose the correct answer.
Fach question carries $1 \frac{1}{2}$ marks.

1. The equation of stare of a sysem is given by $P=f(v) T$, symibulis bcing usual. As V increares, the entropy S of the systern will-
(A) always inctease
(B) always decrease
(C) sometimes increase and somelimes decrease
(I)) renain constant
2. If the ditical temperature for H_{2} gas is $-251^{\circ} \mathrm{C}$, the tempersture of inversion widl be -
(A) $148.5^{\circ} \mathrm{C}$
(B) $-269.74^{\circ} \mathrm{C}$
(C) $-124.5^{\circ} \mathrm{C}$
(D) $421.5^{\circ} \mathrm{C}$
3. In foule-Thomson effect, it is found that for a strall pressure difference $\Delta P=P_{f}-P_{d}$, the temperature difference is given by $\Delta T=\frac{V}{C_{f}}(\alpha a f-1) \Delta P$, where $a=\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{F}$. For n moles of an ideal gas, the said temperature đifference will be -
(A) $\frac{V}{C_{p}}(\alpha T-1) \Delta P$
(B) $\frac{V}{C_{r}}(1-a T) \Delta P^{P}$
(C) $\frac{y}{\pi R}(\alpha T-1) \Delta P$
(D) Tero
4. If 100 gim of water at $40^{\circ} \mathrm{C}$ is mixed widh $\left[(\%)\right.$ gmt of water at $20^{\circ} \mathrm{C}$, the firind temperature of the mixiture will be $30^{\circ} \mathrm{C}$, provided on heat is lost elsewhicre. So, the net heret clange of the universe (ΔQ) is zero. Then, the get change in ettropy of the univesse ($\Delta \mathrm{S}$) will be -
(A) 2000 ;
(B) yreater than 7 foro (i.e. positive) ;
(C) Less then 7 תro (j.e. negalive) :
(ID) somctùnes positive und solnetimits ncyurice

Turn Over
5. In a firs-xder plase transition the following statement is true --
(A) The Helsinwitz free encrey (T) remains constant.
(B) The Grihbs' free entergy (G) remains constiant.
(C) The enthalpy (H) renaxins conntant
(D) Both F and G remain constart.
6. The maynetic flux (in midli-weber) associated with a coil in a magnetic ficld changes with time t (in sec) by the following equation : $\phi=\frac{t^{7}}{3}+\frac{t^{2}}{2}+4 r$. The induced e.m. Γ. in the will when $t=2$ sec will be -
(A) 10 wole
(B) 1.0 voll ;
(C) 0.1 volt
(D) 0.01 wolt
7. A series LR circuit is ferd by an alternating em. C . $E=E_{0}$ sin wt, terms being usual. The value of the ohmic resistance (R) is so adiusted that thr circuit delivers nuximum power, in that case, the power factor has a value -
(A) $\frac{1}{\sqrt{2}}$
(B) 1.0
(C) 0
(D) $\frac{1}{2}$
8. In a matcrial, the magnetisation is $\bar{M}=\left(2 y \hat{i}^{\hat{i}}-3 x \hat{k}\right) \lambda^{-1}$. The cortesponding Dound current density $\left(J_{M}\right)$ is -
(A) $(3 \hat{j}+2 \hat{k}) A \cdot m^{-2}$
(B) $(2 \dot{k}-3 \dot{j}) \mathrm{Am}^{-2}$
(C) $(3 \hat{j}-2 \hat{k}) A \cdot m^{-2}$
(D) $(3 i-2 \hat{j}) A \cdot \pi^{-2}$
9. In an ideal slep-up transformer, the secondary yoitnge is greater than the primary volage For such a transfomer, the following statement is true -
(A) The secondary cument is greates than the prinnery curnent 50 that thene is a net gain of power
(B) The secotdary current is less then the prithary current so that power remeins conserver.
(C) The secondary cuftent is less than the primary cwrent so that there is a net loss of pouret.
(D) The primary and the secondary currents ane always equal so that there is always a grin of power.
10. A uniform wire of length 'f'm is bent into a circle. The current flowing through the wite is I amp. Ibse magretic indurtion at the centre of the circle will be -
(A) $\frac{\mu_{0} I}{2 I}$ tesla ;
(B) $\frac{\pi \mu_{0}{ }^{f}}{2 i}$ 1es]a;
(C) $\frac{\pi+k_{0} I}{l}$ testa ;
(D) $\frac{2 \pi \mu_{0} I}{l}$ testar;

P- $-1(1+1+1) \mathrm{H} / 18(\mathrm{~N})$

2018

PHYSICS (Honours)

Paper Code: V-B

[New Syllabus]

Time: Three Hours Thirty Minutes

The figures in the margin indicate ftid marks.

Answer five questions, takiyg ac lease two from each groun.
(Any kind of Calculator may be used)

Group - A

[Thermodymamics]
I. (a) What do you mean by 'heat', 'work' and 'intectal energy'? Distinguish anlong yhcm.
(b) Consider the infinitesimal quantity $d F=\left(x^{2}-y\right) d x+x y$. Is $d F$ a perfect differential " tri we deflise $d G=\frac{d F}{x^{2}}$, will dG be a pertece differential? 2
(c) Show that the minimum pressure that can be atained by one mole of an ideal gas during a process govemed by the relation $T=T_{0}+\alpha V^{2}$ is $2 R \sqrt{a T_{0}}$, where α and T_{0} are posidive constants.
(d) Jrove thut, working tetween the same temperature linuits, no inteversible crogine can be more efticient dand a teversible ome.
2. (a) Prove analytically that work done by a system (dW) is as impertict difterntid
(b) Show that for a chernidyramic syscemn $\left(\frac{\partial P}{\partial T}\right)_{V}=a E_{r}$, where a is the cuefticient of volure expansion and E_{T} is the isothermad bulk mordulus of elasticity:
(c) Write down the Clausits statement and the Kelvin-Planck stitement of the second law of thermodynarucs and prove that the two statements are cquivalent.
(d) Represent a Campt cycle on $S=T$ diugram.
3. (a) Prove that for a system undergoing isothermal incehoric transformidionz the Hehmbotre free enerty remains constant.
(b) If O represcris the Gibbs' free energy of a 5 ystern, show that $C_{P}=-T^{(}\left(\frac{\partial^{2} G}{\partial T^{2}}\right)_{F}$, terms being usial.
(c) State the essential differences between a J. T. expansion and an adiabatic expansion.
(d) Derdue the relation:

$$
C_{n}-C_{y}=-T\left(\frac{\partial P}{\partial V}\right)_{S}\left(\frac{\partial V}{\partial T}\right)_{\mu}^{2} \text {. From this retation justify durt } C_{P}=C_{Y}
$$

for water in $4^{\circ} \mathrm{C}$.
4. (a) Using the proper thermadymanic function, deduct the Mixwell's relatiort : $\left(\frac{\partial T}{\partial T}\right)_{5}=\left(\frac{\partial V}{\partial S}\right)_{P}$
(b) The pressure on 100 grn of a metal is increased quasistacicalty and isothermally form zero to 100 ampsphere. Assuming the density and isolbarmal bulk moxivius to remain constant an the values $10^{4} \mathrm{ken}^{1} \mathrm{~m}^{1}$ and $1.50 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}$, calculate the work drane in Joulc. Indicate the significance of your result

$$
4
$$

(c) Write duwn Clapeyron's equation for the first otder phasc transition of a system, explaninge the symbols used. The density of jodine at the boiling point ($185.3^{\circ} \mathrm{C}$) is $3.71 \mathrm{gm} / \mathrm{cc}$ and larent hear of waperisurion is 4 th.9 cal'grm. If the briling point changes by $t^{\circ} \mathrm{C}$ tor a change of pressime of 17 min of Fg calatate the specific volume of the vapour: Take $\mathrm{J}=4.1 \mathrm{~B}$ joulelcal.

Group - B

[Electricity - I]
5. (a) State Ampere's circuital thearem and with its help show that $\bar{\nabla} \times \bar{B}=f u \bar{J}$, temms being usual.
(b) A statinnary loop C enelosing a surfice arra S is kept in a matnetic fleld $\vec{B}(t)$. Show that the induces electric field (\vec{E}) satisfies the relations:

$$
\begin{equation*}
\vec{\nabla} \times \vec{E}=-\frac{\vec{\partial}}{\partial t} \tag{3}
\end{equation*}
$$

(c) A uniform wire carries a dertent $[$. The portions $A B$ and $C D$ of the wire are strajght and the portion BPC is a samicizle of radius ' r ' with cemre at 0 (see figure). Find the magertic B-ficld at 0 .

(d) Verify that the vector posential \vec{A} dwe to a uriform magretic induction \vec{B} is given by $\vec{A}=-\frac{1}{2}(\vec{r} \times \vec{B})$.
6. (a) A bathery of e.m.f. E is connected across a coil of self inductance L ath ohrnic [chistance R. P'ove that, aller f sex, the current will be $n\left(\frac{1-\pi}{R}\right)$, where L b $a+B t=0$.
(b) A capacitor C ' is charged throuth in resistidnce R by a trallery of e.m. . . E. The encrgy supplied by the battery is $g_{0} E$ (wheterc $g_{0}=(.5)$) whereas the enirgy grixed by the capacior is $\frac{1}{2} g_{0} E$. Account for the difterence in energy.
(c) The em.f. of a curfe couple working berween $0^{\circ} \mathrm{C} \cdot$ and $100^{\circ} \mathrm{C}$ is given by $E=a r+\frac{1}{2} b f^{2} \mu v$.

The constants ' a ' and ' b ' with respect to a stiandard metal are given
 $b_{F s}=-0.029 \mu v /{ }^{c} c^{2}$.

Calculate the reutral temparature, Felticr ecelficicints and the elfelive Thomson e.m.f. of the coutple.
 генистаг:
$2+1+1$
(b) Give the theory of a moving cuit ballistic palvanmmener and dadue an expression for the transicnt charge flowing houngh لure galvandureter in ctoms of the firsh throw of the galuaronterer coil.

What would be the mudider expressidu if the dituping comection is incorporated?
6×1

Then OMeT
8. (a) Detive an expression for the instantaneous current in a series $L C R$ circuit driven by a situcsoidal em.f. $V=V_{0}$ sin wt, terns having usual siggificance. Define Q-factor of such a circuit 4+1
(b) Show thel the form fector of the waveforn $V(r)=V_{0}$ (where V_{0} is a constant) for $0 \leq t \leq T$ is $\frac{2}{\sqrt{3}}$, where T is the period of the bave form. 3
(c) How can you produce a rotating magnetic field? Mention one spplication of this tolating masgetic forid.

