2023

MATHEMATICS (Honours)

Paper Code: MATH6 - DC-13

Full Marks: 32

Time: Two Hours

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Group - A

Answer any four questions :

 $1 \times 4 = 4$

- (a) When a feasible solution of an L.P.P called an optimal solution?
- (b) State fundamental theorem of L.P.P.
- (c) How many basic solutions are possible in a system of m-equations and n-unknowns? (n≥m)
- (d) Define a convex set.
- (e) State why an assignment problem is not an LPP.
- (f) Find the extreme points, if any, of the following set:

$$S = \{(x, y): x^2 + y^2 \le 25\}$$

(g) Define saddle point.

P.T.O.

Group - B

Answer any two questions:

5×2=10

- Show that intersection of two convex sets is also a convex set.
- 3. Solve the following LPP graphically

Maximize Z = 4x + 2y

Subject to
$$3x + y \ge 27$$

 $-x - y \le -21$
 $x + 2y \ge 30, x, y \ge 0$

- Prove that the dual of the dual of a given primal is primal.
- 5. Solve the following 2 × 4 game problem graphically:

Group - C

Answer any two questions:

9×2=18

6. Find the solution of the following transportation problem:

(3)

	D_1	D_2	D_3	D_4	$\mathbf{a_{i}}$
O_1	10	20	5	7	10
O ₂	13	9	12	8	20
O ₃	4	15	7	9	30
O ₄	14	7.	1	0	40
O ₅	3	12	5	19	50
bj	60	60	20	10	200

Examine whether the problem has an alternative optimal solution. 7+2

(a) Solve the following L.P.P by simplex method.

Maximize
$$Z = 7x_1 + 5x_2$$

Subject to $x_1 + 2x_2 \le 6$
 $4x_1 + 3x_2 \le 12$
 $x_1, x_2 \ge 0$.

(b) Solve the following assignment problem

I	II	III	IV
8 .	26	17	11
13	28	4	26
38	19	18	15
19	26	24	10
	13 38	8 26 13 28 38 19	8 26 17 13 28 4 38 19 18

P.T.O.

(a) Use dominance property to solve the following problem of game

7

		\mathbf{B}_{1}	B ₂	B_3	B ₄
	Aı	4	2	3	2
A	A ₂	-2	4	6	4
	A ₃	2 .	1	3	5

(b) Explain the concepts of pure strategies.

2023

MATHEMATICS (Honours)

Paper Code: MATH6 - DSE-3(A), 3(B) & 3(C)

Full Marks: 32 Time: Two Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Paper Code: DSE-3(A)

(Point Set Topology)

Group - A

Answer any four questions :

 $1 \times 4 = 4$

- (a) Let R_u and R_l denote respectively the usual topology and the lower limit topology on R. Is the identify function f:R_u → R_l continuous?
- (b) Write down a basis for the discrete topology on a non-empty set x.
- (c) Find all the limit points of {b, c} in the topological space (X, τ) where X = {a, b, c} and τ = {φ, X, {c}}.
- (d) Find if there exist any set which is neither open nor

closed in the topological space (X, τ) where $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}, \{b, c\}\}.$

- (e) State continuum hypothesis.
- (f) Give example of a path connected topological space.
- (g) State the Baire category theorem.

Group - B

Answer any two questions:

5×2=10

- 2. State and prove Schroeder-Bernstein theorem.
- Let Y be a subspace of a topological space X and A
 be a subset of Y. Let A denote the closure of A in X.
 Show that the closure of A in Y is A∩Y.
- Prove that the union of a collection of connected subspace of a topological space, that have a point in common is connected.
- Prove that closure of a set is the smallest closed set containing the set.

Group - C

Answer any two questions:

 $9 \times 2 = 18$

(a) State Zorn's lemma. Hence prove the Hausdroff
Maximal principle. 1+4

- (b) Let B be a basis for a topology τ on X, prove that τ equals to the collection of all unions of elements of B.
- (a) If B and C are basis of two topologies on X and Y respectively, then show that the collection D = {B×C: B∈B, C∈C} is a basis for the topology on X×Y.
 - (b) Prove that image of a compact set under a continuous mapping is compact.
 4
- 8. (a) Let X = {1,2,3} and Y = {a,b,c}. Let τ₁ and τ₂ be topologies on X and Y respectively, where τ₁ = {φ, X, {1}} and τ₂ = {φ, Y, {a}, {a,b}}. A map f is defined by 1 → a, 2 → a, 3 → b. Examine whether the mapping f is open, closed, continuous.
 - (b) State and prove the Ascoli-Arzela theorem. 4

 \mathbf{n}

e:

Paper Code: DSE-3(B)

(Theory of Ordinary Differential Equations)

Group - A

1. Answer any four questions:

 $1 \times 4 = 4$

- (a) Test for local and global stable point of $\frac{dx}{dt} = x^2 1.$
- (b) Prove that two different homogenous systems cannot have the same fundamental matrix.
- (c) State the Gronwall's inequality.
- (d) Test the stability of the system $\dot{x} = Ax$ where $A = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}$ at its critical point.
- (e) If x₀ ∈ Γx₁ where Γx₂ is a trajectory of a system passing through x₁ then prove that Γx₀ = Γx₁.
- (f) Find the phase paths for the equation $\ddot{x} + \alpha \sin x = 0$.
- (g) State maximal interval theorem.

Group - B

Answer any two questions:

5×2=10

2. Show that $\frac{f(x,y)\hat{i} + g(x,y)\hat{j}}{\sqrt{[f(x,y)]^2[g(x,y)]^2}}$ gives the vectors of

the vector field for the differential equations $\frac{dx}{dt} = f(x,y)$ and $\frac{dy}{dt} = g(x,y)$.

- 3. Let, f(t,x) be continuous and satisfy a lipschitz condition in $R = \{(t,x): |t-\tau| \le a, |x-\xi| \le b, (a,b>0)\}$. Then prove that the IVP $\frac{dx}{dt} = f(t,x), x(\tau) = \xi$ has atmost one solution in $|t-\tau| \le a$.
- 4. Prove that the change of variable x(t) = P(t)y transforms the periodic system $\dot{x} = A(t)x$ to the system with constant coefficients where P(t) is Floquet normaliser.
- 5. Let A be a $n \times n$ constant matrix. Then prove that a fundamental matrix Φ for $\tilde{x}' = A\tilde{x}$, $(t \in I)$, is given by $\Phi(t) = e^{At}$, $|t| < \infty$.

Group - C

Answer any two questions: 9×2=18

- State and prove Cauchy-Peano existence theorem.
- 7. (a) Show that the zero solution of van der Pol's equation $\ddot{x} + e(x^2 1)\dot{x} + x = 0$ is uniformly and asymptotically stable when e < 0 and unstable when e > 0.

Construct a Lyapunov function for the stable case.

P.T.O.

31

- (b) Investigate the stability of the zero solution of the system $\dot{x} = -y x^3$, $\dot{y} = x y^3$.
- 8. (a) State and prove Poincare-Benedixon theorem. 5
 - (b) Diagonalise the coupled linear system

$$\dot{x}_1 = -x_1 - 3x_2$$

$$\dot{x}_2 = 2x_2$$

Hence find the general solution.

Bridge Rivers

4

Paper Code : DSE-3(C)

(Integral Transform)

Group - A

1. Answer any four questions: $1 \times 4 = 4$ (a) State and prove first shifting theorem for Laplace transform. (b) Find $L\{t^5e^{3t}\}$. (c) If $L\{F(t)\}=f(s)$, then prove that $L\{F(at)\} = \frac{1}{a}f(\frac{s}{a}).$ (d) Find $L^{-1}\left\{\frac{e^{-\pi s}}{s^{\nu}+1}\right\}$. (e) Find the Fourier transform of $f(x) = e^{\frac{-x^2}{2}}$. (f) Use linearity property of z-transformation to find $z\{\sin h n\theta\}.$ (g) Find the Laplace transformation of $f(t)=t^n; n>-1$

Group - B

Answer any two questions: 5×2=10

- 2. Using Laplace transform, prove that $\int_0^a te^{-3t} \sin t dt = \frac{3}{50}$. 5
- 3. Find the Fourier sine transform of $e^{-|x|}$. Hence evaluate $\int_0^\infty \frac{x \sin mx}{1+x^2} dx.$
- 4. If F(x) has the Fourier transform f(s), then prove that $F(x)\cos ax$ has the Fourier transform $\frac{1}{2}f(s-a)+\frac{1}{2}f(s+a).$ 5
- 5. Using residue method or any other method find

$$Z^{-1}\left\{\frac{9Z^{3}}{(3z-1)^{2}(z-2)}\right\}.$$

Group - C

Answer any two questions: $9 \times 2 = 18$

6. (a) Prove that

$$L\left\{\frac{\cos(at)-\cos(bt)}{t}\right\} = \frac{1}{2}\log\left(\frac{p^2+b^2}{p^2+a^2}\right)$$

(b) Solve the integral equation

$$\int_{0}^{\alpha} F(x) \sin(xt) dx = \begin{cases} 1 ; 0 \le t < 1 \\ 2 ; 1 \le t < 2 \\ 0 ; t \ge 2 \end{cases}$$

7. (a) Apply Laplace transform to solve

$$\frac{d^2y}{dt^2} + 25y = 10\cos(5t)$$
 gives that $y = 2$, $\frac{dy}{dt} = 0$
when $t = 0$.

(b) Verify convolution theorem in Fourier Transform for the functions

$$f(x) = e^{-x^2}, g(x) = e^{-x^2}, x \in (-\infty, \infty).$$

8. (a) Find the Fourier transform of

$$f(x) = \begin{cases} 1 \; ; \; |x| < a \\ 0 \; ; \; |x| > a \end{cases}$$

(b) Using the z-transform, solve the difference equation

$$U_{n+2} + 4U_{n+1} + 3U_n = 3^n \text{ with } U_0 = 0, U_1 = 1.$$
 5

2023

MATHEMATICS (Honours)

Paper Code: MATH6 - SEC-2

Full Marks: 32

Time: Two Hours

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Group - A

Answer any four questions.

 $1 \times 4 = 4$

- 1. (a) Let X be a Poisson variate with parameter μ and P(X=0)=P(X=1), prove that $\mu=1$.
 - (b) Find the mean of the random variable X whose density function f(x) is given by

$$f(x) \begin{cases} e^{-x} ; \ 0 < x < \infty \\ 0 ; \text{elsewhere} \end{cases}$$

- (c) If the lines of regression of y on x and x on y are 3x+2y=26 and 6x+y=31 respectively. Find the correlation coefficient between x and y. 1
- (d) A die is thrown 108 times in succession. Find the expectation of the number of 'six' appeared.

P.T.O.

- (e) Find the probability that there may be 53 Sundays in a leap-year.
- (f) The coefficient of variation is 40 and the mean is 30; find the standard deviation.
- (g) Define scatter diagram.

Group - B

Answer any two questions.

5×2=10

1

- 2. There are two identical boxes. The first box contains 5 white, 7 red balls and the second box contains 5 white, 5 red balls. One box is chosen at random and a ball is drawn from it. If the ball drawn is found to be white, calculate the probability that it is drawn from the first box.
- Calculate the mean deviation from the mean of the following distribution —

Marks	0-10	10-20	20-30	30-40	40-50
Frequency	5	8	15	16	6

5

 The scores of two batsmen, A and B, in ten innings during a certain season, are as under —

A: 32 28 47 63 71 39 10 60 96 14 B: 19 31 48 53 67 90 10 62 40 80

Find which of the batsman is more consistent in scoring.

5. Let X be a Poisson variate with parameter μ . Show that $P(X \le n) = \frac{1}{n!} \int_0^{\alpha} e^{-x} x^n dx$, where n is any positive integer.

Group - C

Answer any two questions:

9×2=18

 (a) A coin is tossed (m + n) times (m > n). Show that the probability of getting at least m consecutive

heads is
$$\frac{n+2}{2^n+1}$$
.

(b) The I.Q. of students of a class is normally distributed with parameter m = 100 and σ=10. If the total number of students in the class is 700, then find the number of students who have

$$I.Q. \ge 115$$
. Given that $\frac{1}{2\Pi} \int_{-\alpha}^{1.5} e^{\frac{-x^2}{2}} .dx = 0.9332$.

4

 (a) Find out the skewness and Kurtosis of the series by the method of moments:

Measurement	0-10	10-20	20-30	30-40
Frequency	1	3	4	2 .

(b) Using the method of least square, fit a curve of the $y = a + bx^2$ to the following data — 4

х	0	1	2	3
у	1	6	20	48

8. (a) For the Binomial (n, p) distribution, prove that

$$\mu_{r+1} = p(p-1)\left[nr \,\mu_{r-1} + \frac{d\mu r}{dp}\right]$$

where μ_r is the rth central moment of the distribution.

(b) If the random variables X and Y are connected by the linear relation 2x+3y+4=0. Show that

$$\rho(x,y) = -1. 4$$