EXPERIMENT 23 ESTIMATION OF

Structure

23.I Introduction

Objectives
23.2 Principle
23.3 Materials Required
23.4 Procedure
23.5 Calculations and Results
23.6 SAQ

23.1 INTRODUCTION

Oxygen is necessary for aerobic rетipiratin. Aquatic organisms for respiration obtain the oxygen from water, where it remains in dissolved form. In addition the dissolved oxygen in water affects the oxidstion-retuction state of many other chemical variables, such as nitrate and ammonia, sulphate and sulphite, and ferrous and ferric ions. The amount of oxygen present in aquatic errirenromen is highly variable and generally low. Many factors such as temperature, salinity, respiration, phetesyrulteis and decomposition of decaying plants and animals affect the amount of dissolved oxygen. As such oxygen is not very soluble in water and the solubility decreases with increasing temiperabire. The photosynthetic acitivity of watcr plants increase the amount of dissolved oxygen during day time, whereas during night it bccomcs depleted due to respiration of plants and animals. During the process of decomposition microorganisms use the dissolved oxygen thus making it deficient. This adversely affects the other aquatic organisms. You can sce in Table 23.1 the oxygen content in some respiratory media.

Table 23.1: Oxygen content of some samples of water and air

Samples	Dissolved Oxygen content millilitrerlitre
Sea water at $5^{\circ} \mathrm{C}$	$\mathbf{6 . 4}$
Fresh water at $5^{\circ} \mathrm{C}$	9.0
Fresh water at $25^{\circ} \mathrm{C}$	5.8
Air	209.5

The itmount of oxygen dissolved in water can be measured and is usually .expressed as $\mathrm{mg} / 1$ (equivalent to parts per million or ppm). There are two methods of estimating dissolved oxygen: by using oxygen electrodes and by Winkler's titration method.

Winkler's method is the most commonly used method for estimation of dissolved oxygen in water. In this lab exercise you will be estimating the dissolved oxygen by Winkler's method from at least from two different water sources such as a pond and a well, or tap water and well water. or a river and pond.

Objectives
At the end of this lab exercise you should be able to:
describe the principle behind the estimation of the dissolved oxygen in water,

- perform the experimental procedure without any difficulty,
become familiar with the calculations for the estimation of oxygen, and
- discuss that the oxygen content of the different aquatic habitats differ significantly.

23.2 PRINCIPLE

Winkler's method is a volumetric procedure in which manganous ions $\left(\mathrm{Mn}^{2+}\right)$. are oxidised into manganic ions $\left(\mathrm{Mn}^{3+}\right)$ which reacting with an alkali precipitates into $\left.\mathrm{HnO}_{4} \mathrm{OH}^{1}\right)_{2}$ and $\mathrm{Mn}(\mathrm{OH})_{2}$. The extent of oxidation is directly related to the amount of dissolved oxygen. In the presence of iodide ions in dilute sulphuric acid, the manganese hydroxkt:- is converted into manganous sulphate $\left[\mathrm{MnSO}_{4}\right]$ and simultaneously the iodide ions are oxidised to molecular iodine $\left(\mathrm{I}_{2}\right)$. It is the concentration of this iodine that is directly proporional to the concentration of oxygen in the original water sample. The amount of iodine liberated at the end of the reaction can be determined by titration with a Higurulyate solution using starch as an indicator to determine the end product.

23.3 MATERIALS REQUIRED

1. Burette and Burette stand

2300 ml . glass stoppered reagent bottles
3. 250 ml . conical flasks
4. $\mathbf{1 0} \mathrm{ml}$. pipettes
5. Measuring cylinder
6. $\mathbf{M n S O}_{4}$ solution (36 gms of $\mathbf{M N S O}$, disctived in $\mathbf{1 0 0} \mathbf{~ m l}$. of distilled water.
7. Alkaline-iodide solution
a) 100 gms of $\mathrm{NaOH} / 100 \mathrm{ml}$. of distilled water
b) 27 gms of $\mathrm{NaI} / 100 \mathrm{ml}$. of distilled water
C) Mix solutions a and b
9. Starch solution 1 gm of slarch per 100 ml . of distilled water. The water musl be heated to bearable warmth and the starch dissolved in it.
10. 0.025 N sodium thiosi 11_{1} inat $\left(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}\right)$ solution. (6.205 gms of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. $5 \mathrm{H}_{2} \mathrm{O}$ per 1000 ml . of distilled watcr).

23.4 PROCEDURE

From each samplc obtain wntcr carefully and without air bubbles in 300 ml glass stoppercd reagenl bottles. Label the boltles as A and B. For accuralc deleminination of dissorved oxygen it is very necessary that special care in sampling and pieparion of walcr samples should be taken. Any exposure of the sample to air will vitiate your resulls. Therefore, it is suggested that you collect walcr by kecping your bottle under Lhe surface of waler and allow the water to flow into the boltc very slowly without mixing wilh the air. It is also necessary that prior to the filling of the sample into the bottle, you determine the volume of the bolllc. You niny usc a measuring cylinder for this purpose. Imindedialely after collecting the sample close the boltle wilh a glass stopper. This helps you Io climinate the air spaces. Now, you may add the various rengents to tlic sample as detailed below:

1. Remove the stoppers and add 2 ml . of MnSO_{4} solution followed by 2 ml of alkuline wodide solulion in bottes A and B. Addition of these reagents should be done below the surface of water by dipping the pipette into the water thus prembin the combinmintion with air.
2. Stopper the bott]es and gently tilt Liem several times for the solutions Lo mix. You will sce the formation of ycllowish brown precipitille of $\mathrm{Mm}(01)_{2}$ and $\mathrm{H}_{\mathrm{H}} \mathrm{O} \mathrm{OHF}_{3}$. Allow the jucherne lo settle down and genlly shake again.
3. Remove the stopper and add carefully 2 nil of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ under the surface of prepared samples. Stopper the bottles again and mix well. The brown presipitile completely dissovles leaving a straw or brown colourcd solution.
4. Transfer 50 ml of tlic contents of the sample botule A to a 250 nil conical flask. Add 1 ml of starcl indicator solution. The solulion turns bluc. Titrate this solution against 0.025 N sodium thiogulpiate solulion.

For titration you have to fill the burette with the citestilatiate solution. Open the stopcock of the burelte and let the solution run down once. Reffill Lhe burette upto zero mark and perform the titration. The end point is the digapserinte of the bluc colour. Record the burelte reading. You may repeat the titration till you get the concordant valucs. The concordant valucs may be obtained even at the end of the second titration if you do them carcfully.
5. Repcat the above protlure with the sample B. Fill in the dala in your observation note book in the form of the table provided below.

Volume of the sample

A.	L.	50	1	$\pm .5$	45
	2.	50	.	4.5	9.0

23.5 CALCULATIONS AND RESULTS

You can obtain the amount of dissolved oxygen per litre of water using the following calculations.

Amount of ostgryicice $=\frac{K \times 200 \times \text { vol. of } \mathrm{Ni}_{2} \mathrm{~S}_{2} \mathrm{O}_{4} \times 0.698}{\text { Volume of the sample }}$
where $\mathrm{K}=\frac{\text { Volumc of bottle }}{\text { volume of the bottle - volume of the reagent added }}$
A sample calculation is shown below:
Volume of the bottle $=300 \mathrm{ml}$
Amount of reagent used $=4 \mathrm{ml}(2 \mathrm{ml} \mathrm{MnSO}+2 \mathrm{ml}$ Alkaline iodide $)$
$K=\frac{300}{300-4}=\cdot \frac{360}{796}=1.014$

Volumc of $\mathrm{NaS}_{2} \mathrm{O}_{3}$ consumed $=4.5 \mathrm{ml}$

Amount of $\mathrm{O}_{2}=\frac{\mathrm{K} \times 200 \times 4.5 \times 0.698}{50}$

$$
=\frac{1.6114 \times 200 \times 4.5 \times 0.698}{50}=12.74 \mathrm{mg} / \mathrm{L}
$$

23.7 SAQ

Do you find any difference in the oxygen content of the two water samples? If the answer is yes, how do you account for the difference?
\qquad
\qquad
\qquad
\qquad
\qquad

