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1 Introduction to Topology:

Topology is a branch of mathematics that studies the properties of spaces that are
preserved under continuous deformations, such as stretching, twisting, and bending,
but not tearing or gluing. It focuses on the qualitative aspects of geometry rather
than the exact shape and size of objects. The fundamental concepts in topology
include:

1. Topological Spaces: These are sets equipped with a topology, which is a
collection of open sets that satisfies certain axioms, allowing the definition of concepts
like continuity, convergence, and compactness.

2. Homeomorphisms: These are continuous functions between topological
spaces that have continuous inverses, indicating that two spaces are topologically
equivalent.

3. Continuous Functions: Functions that preserve the structure of a topological
space, meaning the preimage of any open set is open.

4. Compactness and Connectedness: Key properties of topological spaces. A
space is compact if every open cover has a finite subcover, and connected if it cannot
be divided into two disjoint non-empty open sets.

Topology has applications across various fields, including algebra, analysis, and
geometry, and is foundational in understanding the global properties of spaces used
in many areas of mathematics and science.

In this thesis we will focused on Compactness and Connectedness. Before
that, let’s start with some basic concepts that are useful in our study.

Definition: A topology is a set of collection of a set X satisfying following con-
ditions:
(i) ∅, X belongs to T
(ii) Arbitrary union of elements of T belongs to T
(iii) Finite intersection of elements of T belongs to T

The set X on which the topology T is defined together with the topology is called as
topological space.
i.e., here (X, T ) is a topological space.

Let us take some examples of collection of subsets of X = {a, b, c} and see whether
the are a topology or not.

Examples:
(i)
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Let T1 = {∅, X}, Then T1 is a topology on X.

(ii)

Let T2 = {∅, X, {a}}, then T2 is a topology on X.

(iii)

Let T3 = {∅, X, {a}, {b}}, then T3 is not a topology on X, as {a}, {b} ∈ T3 but
{a} ∪ {b} = {a, b} ̸∈ T3.

(iv)

Let T4 = {∅, X, {a, b}, {b, c}}, then T4 is also not an topology on X, as {a, b}, {b, c} ∈
T4 but {a, b} ∩ {b, c} = {b} ̸∈ T4.

(v)

Let T5 = {∅, X, {b}, {a, b}, {b, c}}, then T5 is a topology on X as adding the set {b}
in the example-(iv) solve the problem for being a topology.
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(vi)

Let T6 = {∅, X, {b, c}}, then T6 is a topology on X.

(vii)

Let T7 = {∅, X, {a}, {b}, {c}, {a, b}, {b, c}, {a, c}}, then T7 is a topology on X.

1.1 Some definitions of useful terminologies:

Discrete topology: Let X be any set. The collection of all subsets of X is a topol-
ogy on X. This topology is called as discrete topology.
From the previous examples, T7 is the discrete topology on the set X = {a, b, c}.

Indiscrete topology: Let X be any set. The collection which consists only ∅ and X
is a topology on X. This topology is called as indiscrete topology or trivial topology.
From the previous examples, T1 is the discrete topology on the set X = {a, b, c}.

Open set in topology: Let (X, T ) is a topological space. All the members of
T is known as open sets or T -open.
i.e, A subset U of X is said to be an open set or T -open if U ∈ T .

Closed set in topology: Let (X, T ) is a topological space. Then complements
of all open sets are known as closed sets or T -closed set.
i.e, A subset F of X is said to be closed or T -closed if X − F ∈ T .

Clopen set: Let X, T be a topological space. A subset of X is said to be clopen if
the subset is both open and closed together.

For any set X, ∅, X are clopen for any topology on X.

Finer and Coarser: Let T , T ′ are two topologies on a set X. If T ⊆ T ′, we
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say T ′ is finer than T and T is coarser than T ′.
If we have T ⊂ T ′, we can use strictly finer and strictly coarser for T ′ and T respec-
tively.

1.2 Basis of a topology:

Definition: Let X be a set, a basis for a topology on X is a collection B of subsets
of X (called as basis element) such that
(i) For each x ∈ X, there is atleast one basis element B which contains x.
i.e, ∀x ∈ X, ∃ B ∈ B : x ∈ B.
(ii) If x ∈ B1 ∩B2 ; B1, B2 ∈ B then there exists B3 ∈ B such that x ∈ B3 ⊆ B1 ∩B2

If B satisfies the above two conditions that is B is a basis of a topology, then we
can define a topology T generated by B as:
U ∈ T if for each x ∈ U ⊆ X there exists B ∈ B such that x ∈ B ⊆ U

Again we are going to take some collection of subsets of the set X = {a, b, c} and
check whether they are a basis of topology on X.
Examples:
(i) B1 = {∅, X}
(ii) Let B2 = {{a}, {b}, {b, c}}, then B2 is a basis of a topology on X as it satisfies
the above two conditions.
(iii) Let B3 = {{a}, {b}, {a, b, c}}, then B3 is a basis of a topology on X as it satisfies
the conditions of basis.
(iv) Let B4 = {{a}, {b}}, then B4 is not a basis of a topology on X as c ∈ X but
∄B ∈ B4 : c ∈ B (B4 does not satisfy condition (i)).
(v) Let B5 = {{a, b}, {a, c}}, then B5 is not a basis of a topology on X as {a, b} ∩
{a, c} = {a} but there is no basis element which is a subset of {a} (B5 does not satisfy
condition (ii)).
(vi) Let B6 = {{a}, {a, b}, {a, c}}, then B3 is a basis of a topology on X as it satisfies
the conditions of basis.
(vii) Let B7 = {{a}, {b}, {c}}, then B3 is a basis of a topology on X as it satisfies the
conditions of basis.

Note: Let X be any set. The collection of all singleton (one point) subsets of
X is a basis of the disctete topology on X
e.g, From the above examples of bases, B7 is the basis of the discrete topology on
x = {a, b, c}.
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1.3 Some popular topological spaces:

Standard topology: Let X = R. If B be the collection of all open intervals in the
real line, i.e, B = {(a, b) : a, b ∈ R}. Then the topology generated by B is called as
Standard topology or usual on X = R.
It is denoted as Ru.
It is important to note that we can define usual topology on Rn ∀n ∈ N by using all
the open balls as a basis.

Lower limit topology: Let X = R. If B′ be the collection of all semi-open in-
tervals of the form [a, b) = {x ∈ R : a ≤ x < b}. Then the topology generated by B′

is called lower limit topology on R.
It is denoted as Rl

Here B′ = {[a, b) : a, b ∈ R.

Upper limit topology: Let X = R. If B′′ be the collection of all semi-open in-
tervals of the form (a, b] = {x ∈ R : a < x ≤ b}. Then the topology generated by B′′

is called upper limit topology on R.
Here B′′ = {(a, b] : a, b ∈ R.

K-topology: Let X = R. Let K = { 1
n

: n ∈ Z+} and B∗ be the collection of
all open intervals (a, b) with all the sets of the form (a, b) − K. Then the topology
generated by B∗ is called K- topology on R.
It is denoted as RK .
Here B∗ = {(a, b), (a, b)−K : a, b ∈ R}.

Product topology: Let X and Y be two topological spaces. The product topology
on X ×Y is a topology having as basis the collection B of all sets of the form U ×V ,
where U is open subset of X and V is open subset of Y .

Order topology: Let X be a set with a simple order relation. Assume X has
more than one element. Let B be the collection of all sets of the following types:
(i) all open intervals (a.b) in X,
(ii) all the intervals of the form [a0, b), where a0 is the smallest element of X (if any).
(iii) all the intervals of the form (a, b0], where b0 is the largest element of X (if any).

Co-finite topology: Let X be any set. A collection of all subsets U of X such
that X −U is finite or all of X, this collection is a topology on X, called as Co-finite
topology or finite complement topology.
Co-finite topology generally written as Tf .
i.e, Tf = {U ⊆ X : U = ∅ or X − U is finite}
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Subspace topology: Let (X, T ) be a topological space. If Y is a subset of X,
The collection TY = {U ∩ Y : U ∈ T } forms a topology on Y , called as subspace
topology or relative topology.
(Y, TY ) is called subspace of (X, T ).

E.g, Let X = {a, b, c} and T = {∅, {a}, {a, b}, {b, c}, {b}}.
Let Y = {a, c} ⊂ X
Now,

TY = {U ∩ Y : U ∈ T }
= {∅, Y, {a}, {c}}

Metric topology: If (X, d) be a metric space. Then the collection of all ϵ−ball
Bd(x, ϵ) forms a basis for a topology on X. This topology is called topology on the
metric space X, induced by the metric d.

1.4 Linear continuum:

Least upper bound property: An ordered set A is said to have the least upper
bound property if every subet A0 of A that is bounded above, has a least upper bound.

Example:
(i) Consider A = (−1, 1), then A has least upper bound property.
(ii) Consider B = (−1, 0) ∪ (0, 1), a subset of R.
Let B0 = (−1, 0), then B0 ̸= ∅ and B0 has upper bound (say 0.5) in B and 0 is the
least upper bound of B0 but 0 ̸∈ B.
So, B does not have least upper bound property.

Linear continuum: A simply ordered set L having more than one element is called
a linear continuum if the following conditions holds:
(i) L has the least upper bound property,
(ii) If x < y, ∃z ∈ L : x < z < y, where x, y ∈ L.

Examples: R,Q are linear continuum.
Another linear continuum is Z+ × [0, 1), shown in the below figure.
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We have used the dictionary order in this topological space.

2 Continuity of a function:

Let X and Y be two topological spaces. A function f : X → Y is said to be contin-
uous if for each open set V of Y , the set f−1(V ) is open in X.
f−1(V ) = {x ∈ X : f(x) ∈ V }.

Continuity of a function f depends not only on the function f but also on the topolo-
gies for its domain and range. So we can use continuity relative to topologies on X
and Y .

Propositions:
(i) A function f : X → Y is continuous if and only if the inverse of each member of
a basis B for Y is open subset of X.
(ii) A function f : X → Y is continuous if and only if the inverse of each member of
a sub-basis S for Y is an open subset of X.

Example: The projection mappings from R2 to R are both continuous.
As, Let Π1 : R2 → R defined by

Π1 ((x, y)) = x
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Now,

Π−1
1 ((a, b)) = (a, b)× R

= (a, b)× (−∞,∞)

Which is open in R × R
Hence Π1 is continuous.
Similarly, Π2, which is defined by Π2((x, y)) = y is continuous.

Theorem: Let X and Y be two topological spaces with f : X → Y . Then the
following statesments are equivalent.
(i) f is continuous.
(ii) For every open subset A of X, f(A) ⊆ f(A)
(iii) For every closed set B of Y , f−1(B) is closed in Y .
(iv) For all X ∈ X and for all neighbourhood V of f(x), there exists a neighbourhood
U of x such that f(U) ⊆ V .

Proof: At first, we will show that (i) =⇒ (ii).
Given, f : X → Y be a continuous map. Let A be a subset of X and x ∈ A.
Now, x ∈ A =⇒ f(x) ∈ f(A).
We have to show that f(x) ∈ f(A).
Let V be a neighbourhood of f(x), i.e, V is an open set in Y containing f(x). There-
fore, f−1(V ) is open in X and contains x.
Then f−1(V ) intersects A at some point y and hence f(x) ∈ f(A).
∴ f(A) ⊆ f(A).

Now, we will show that (ii) =⇒ (iii)
Let B is closed set in Y and A = f−1(B).
Now f(A) = f(f−1(B)) ⊆ B.
Let, x ∈ A, then

f(x) ∈ f(A) ⊆ f(A) ⊆ B = B ,As B is closed.
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i.e,
f(x) ∈ B =⇒ x ∈ f−1(B) = A =⇒ x ∈ A

Therefore, A ⊆ A And hence A = f−1(B) is closed in X.

Now, we will show that, (iii) =⇒ (i).
Let V be an open set in Y and B = Y − V .
Then

f−1(B) = f−1(Y )− f−1(V )

= X − f−1(V )

Since, B is closed in Y then f−1(B) is closed in X.
i.e, X − f−1(V ) is closed in X.
i.e, f−1(V ) is open in X.
Therefore, for all open V in Y , f−1(V ) is open in X. Hence, f is continuous.

Now, we will prove (i) =⇒ (iv)
Given, f is a continuous map.
Let x ∈ X and V is a neighbourhood of f(x).
Then U = f−1(V ) is a neighbourhood of x such that f(U) = f(f−1(V )) ⊆ V .
Since, x and V are arbitrary, then ∀ x ∈ X and for all neighbourhood V of f(x),
there exists a neighbourhood U of x such that f(U) ⊆ V .

Lastly, we will show that (iv) =⇒ (i).
Let V be an open set in Y and x ∈ f−1(V ), then f(x) ∈ V .
Then there exists a neighbourhood Ux of x such that f(Ux) ⊆ V and thus

Ux ⊆ f−1(V ) =⇒ f−1(V ) = ∪x∈f−1(V )Ux

So, f−1(V ) is an open set as arbitrary union of open sets is open.
Therefore, for all open V in Y, f−1(V ) is open in X.
Hence, f is continuous.

3 Homeomorphism:

Definition: Let X and Y be two topological spaces such that f : X → Y be a
bijection, if both the function f : X → Y and inverse function f−1 : Y → X are
continuous, then f is called homeomorphism.
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In simple words, A homeomorphism is a bijective correspondence f : X → Y such
that f(U) is open in Y if and only if U is open in X.

A function f is called bi-continuous or topological if f is open and continuous.
Therefore, f is homeomorphism if and only if f is continuous and bijective.

Example: We can show that an open interval of R is homeomorphic to R.
Let X = (−1, 1) and f : X → R defined by f(x) = tanπx

2

The above graph represents the function.
Here, f is an one-one, onto and a bijective function. Also f−1 is continuous.
Hence, f is a homeomorphism and therefore X is homeomorphic to R
i.e, (−1, 1) ≃ R.

Graphically, two spaces are homeomorphic if we can get one space from the anothe
without join it or cut it, we can use stretching or bending. To understand this let’s
see some examples.

Examples:
(i) A circle with radius 1 is homeomorphic to any other circle of any radius.
(ii) Coffee cup ≃ Doughnut
(iii) There is no homeomorphism between a line and a circle.

Topological property: A property P is called topological property or topological
invariant if whenever a topological space (X, T ) has the property P , every topological
space homeomorphic to (X, T ) also has that property P .

Let us check some property of a topological spaces and further check whenever they
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are topological property or not.

Examples:
(i) We know that X = (−1, 1) and R are homeomorphic and length of X ̸= length of
R
Therefore, length is not a topological property.

(ii) Let X = R+ and f : X → X defined by f(x) = 1
x
. Then f−1(x) = 1

x
and

both f, f−1 is continuous.
So, f is a homeomorphism.
Now, (an) = {1, 1

2
, 1
3
, 1
4
, · · · } is a cauchy sequence but (f(an)) = {1, 2, 3, 4, · · · } is not

a cauchy sequence.
Hence, Cauchy sequence is not a topological property.

As a conclusion it can be added here, that
(i) Length, boundedness, cauchy sequence, radius of a circle, completeness are not
topological property.
(ii) Connectedness, compactness, first countable, second countable, metrizable are
topological property.

4 Connectedness:

Connectedness is a fundamental concept in topology that describes the idea of a
space being "in one piece." A topological space is said to be connected if it cannot be
divided into two disjoint non-empty open subsets. In other words, there is no way to
split the space into two separate parts without cutting it.

Key points about connectedness include:
1. Connected Spaces: A space is connected if the only subsets that are both

open and closed (clopen) are the empty set and the entire space itself.
2. Path Connectedness: A stronger form of connectedness where any two

points in the space can be joined by a continuous path. Every path-connected space
is connected, but not all connected spaces are path-connected.

3. Components: The maximal connected subsets of a space. Any space can be
decomposed into its connected components, which are disjoint and cover the entire
space.

4. Applications: Connectedness is crucial in many areas of mathematics, such
as in the study of continuous functions, where the image of a connected space under
a continuous function is also connected.

Understanding connectedness helps in analyzing the structure and behavior of
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topological spaces, aiding in the comprehension of more complex topological proper-
ties and theorems.

Let’s describe all these terms in more describing way and take a deep dive into
this topic.

Separation: Let X be a topological space. A separation of X is a pair U, V of
disjoint non-empty open subsets of X whose union is X.
i.e, If (X, T ) be a topological space, a separation is a pair U, V satisfying the four
conditions,
(i) U ̸= ∅, V ̸= ∅
(ii) U, V ∈ T
(iii) U ∩ V = ∅
(iv) U ∪ V = X.

Connected space: A topological space X is said to be connected if there does
not exist any sepataion of X.

Connected is a topological property.
i.e, If X is a connected space, then all the spaces homeomorphic to X is connected.

Theorem: A space X is connected if and only if the only subsets of X are both
open and closed in X are ∅ and X.
Proof: Let X is a connected space. It is obvious that ∅ and X are both open and
closed in X.
If possible let A be a non-empty proper subset of X which is both open and closed
in X.
Then X − A is also a non-empty proper subset of X and A, X − A are disjoint.
As A is both open and closed, its complement i.e, X−A is also both open and closed.
Therefore, A, X − A be two non-empty disjoint open subsets of X such that A ∪
(X − A) = X.
So, A, X−A forms a separation of X, which contradicts the fact that X is connected.
Hence, there can not exists any such non-empty proper clopen subset of X.
Hence, the only subsets of X that are both open and closed are X and ∅.

Conversely, let ∅, X are the only both open and closed subsets of X.
If possible, let X is not connected. Then there exists two non-empty disjoint open
subsets A,B of X, such that A ∪B = X
∴ B = X − A.
Since A is open, B is closed and hence B is both open and closed, which is a contra-
diction as we found a non-empty proper subset B which is both open and closed.
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So our assumption is wrong, i.e, X is connected.

Lemma: If Y is a subspace of X, a separation of Y is a pair of non-empty dis-
joint sets A and B whose union is Y , neither of which contains a limit point of other.
The space Y is connected if there exists no separation of Y .
Proof: Let A and B forms a separation of Y , then A is both open and closed in Y .
The closure of A in Y is Ā ∩ Y , where Ā is the closure of A in X.
Since, A is closed in Y , then A = Ā ∩ Y .
So, Ā ∩B = ∅
∴ B does not contain any limit point of A.
Similarly, it can be proven that A does not contain any limit point of B.

Conversely, let A and B be two disjoint non-empty sets whose union is Y and
neither of which contains a limit point of other.
Therefore Ā ∩B = ∅ and A ∩ B̄ = ∅
Then Ā ∩ Y = A and B̄ ∩ Y = B.
∴ A, B are both closed in Y and also A = X − B, B = X − A, implies that A,B
are both open in Y with A ̸= ∅, B ̸= ∅, A ∩B = ∅ and A ∪B = Y .
Hence, A,B forms a separation of Y .

Theorem: If the sets C and D forms a separation of X and if Y is a connected
subspace of X, then Y entirely lies either in C or in D.
Proof: Given, C and D forms a separation of X. Then C,D ̸= ∅, C∩D = ∅, C∪D =
X and C,D are open in X.
If possible let Y lies in both C and D.
So, C ∩ Y, D ∩ Y are open in Y .
Then C ∩ Y, D ∩ Y are two non-empty disjoint open subsets of Y whose union is Y .
Therefore, C ∩ Y, D ∩ Y forms a separation of Y , Which contradicts the fact that Y
is connected.
Therefore, either Y lies entirely in C or Y lies entirely in D.

Theorem: The union of a collection of connected subspaces of a topological space
X that have a point in common, is connected.
Proof:
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Let {Aα : α ∈ Λ} be a collection of connected subspaces of X, having a common
point p.
i.e, p ∈ ∩α∈ΛAα

Let Y = ∪α∈ΛAα

If possible let Y is not connected, i.e, there is a separation of Y . Let C,D forms a
separation of Y .
As C,D forms a separation, then C ∩D = ∅. Which implies, either p ∈ C or p ∈ D.
Without loss of generality, let p ∈ C.
As p ∈ Aα ∀α ∈ Λ and for all α, Aα is a connected subspace of X,
So Aα ⊆ C ∀α ∈ Λ
=⇒ ∪α∈Λ ⊆ C
=⇒ Y ⊆ C.
∴ D = ∅, which contradicts that C,D forms a separation of Y .
∴ ∪α∈ΛAα is connected.

Theorem: Let A be a connected subspace of X. If A ⊂ B ⊂ Ā, then B is also
connected.
Proof: Given, A is a connected subspace of X and A ⊂ B ⊂ Ā.
If possible, let B is not connected. Then let C,D forms a separation of B.
As A ⊂ B and A is connected, then A lies either in C or in D.
Without loss of generality, we are assuming that A lies in C, i.e, A ⊂ C.
Then Ā ⊂ C̄
Since C̄ ∩D = ∅, then B ∩D = ∅, as B ⊂ Ā ⊂ C̄.
As D ⊂ B and B ∩D = ∅, so D = ∅, which contradicts that C,D forms a separation
of B.
Therefore, B is connected.

Theorem: The image of a connected space under a continuous map is connected.
Proof:
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Let X is a connected space and f : X → Y be a continuous function.
Let Z = f(X) and then consider g : X → Z, which is a continuous map as f is
continuous.
If possible let Z is not connected. Then let C,D forms a separation of Z.
Since C,D are open in Z, g−1(C), g−1(D) are open in X, as g is continuous.
As C,D are disjoint, then g−1(C), g−1(D) are also disjoint.
As g is surjective, g−1(C), g−1(D) are non-empty.
Also, g−1(C) ∪ g−1(D) = X
Therefore, we find that g−1(C), g−1(D) forms a separation of X. Which is a contra-
diction as X is connected.
So, our assumption is wrong and hence Z = f(X) is connected.

Theorem: A finite cartesian product of connected spaces is connected.
Proof:

Let us consider two connected spaces X and Y . Also let a point a × b in the space
X × Y .
Then the space X × {b} is connected as X × {b} is homeomorphic to a connected
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space X.
Similarly {x}×Y is connected as it is homeomorphic to a connected space Y , for any
x ∈ X.
Then the space Tx = (X × {b}) ∪ ({x} × Y ) is connected, as it is union of two con-
nected spaces have the point x× b in common.
Now, ∪x∈XTx is connected as it is union of connected spaces having a×b as a common
point.
Also, ∪x∈XTx is all of X × Y .
Therefore, X × Y is a connected space.
We can prove this for finite product of connected spaces by induction by using the
fact that (X1 ×X2 × · · · ×Xn−1)×Xn is homeomorphic to (X1 ×X2 × · · · ×Xn).

Theorem: Let {An} be a sequence of connected subspaces of X such that An∩An+1 ̸=
∅ for all n ∈ N. Show that, ∪An is connected.
Proof:

Given, (An) be a sequence of connected subspaces of X and An ∩ An+1 ̸= ∅ ∀n.
∴ A1 ∩ A1 ̸= ∅
Therefore, A1, A2 are two connected subspaces ofX having a common point, which
implies that A1 ∪ A2 is connected.
Again let us consider A1 ∪ A2 and A3, both are connected subspaces of X and both
have a common point as A2∪A3 ̸= ∅. So, (A1∪A2)∪A3, i.e, A1∪A2∪A3 is connected.
Proceeding in this manner, we can show that ∪An is connected.

Another way of proving: If possible let A,B be a separation of the space ∪An.
As A1 is a connected subspace of ∪An, then either A1 ⊆ A or A1 ⊆ B.
Without loss of generality, let us assume that A1 ⊆ A.
Now, as A1 ∩ A2 ̸= ∅, then A2 ⊆ A.
Again, as A2 ∩ A3 ̸= ∅, then A3 ⊆ A.
Similarly, A3 ⊆ A, A4 ⊆ A · · · An ⊆ A and so on.
∴ ∪An ⊆ A and hence B = ∅, which shows there can not be exist any separation.
Hence, ∪An is connected.
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4.1 Totally disconnected:

A space is totally disconnected if its only connected subspaces are one-point (trivial)
sets.

Ex: Prove that, if X has a discrete topology, then X is totally disconnected.
Proof: Given (X, Td) is a topological space, where Td is the discrete topology on X.
Let U ̸= ∅ be any subset of X.
Case-1: Let U has more than one element and x ∈ U .
Then consider two sets {x} and U − {x}.
Now, {x} ≠ ∅, U − {x} ≠ ∅.
Also, {x} ∩ (U − {x}) = ∅ and {x} ∪ (U − {x}) = U .
Again, in discrete topology, {x} and U − {x} are open.
So, {x}, U − {x} forms a separation of U and thus U is not connected.
Hence subsets of discrete topological spaces having more than one elements are dis-
connected.
Case-2: Let U has exactly one point, say x, i.e, U = {x}
Therefore, we can not find two non-empty disjoint subset of U = {x}. Hence, U = {x}
is connected.
Thus, only connected subsets of discrete topological spaces are the one point sets.
∴ (X, Td) is totally disconnected.

Note: However, the converse part is not true.
i.e, A totally disconnected space can not always be discrete topological space.
E.g, Let X be an infinite set with finite completement topology (co-finite topology),
say Tf .
∴ Tf = {U ⊂ X : U = ∅ or X − U is finite }.
For any finite subset U of X, U is not open in X. So, Tf is not discrete topology.
Now let us consider a two point subset Y of X such that Y = {x, y}.
Then X − {y} = A (say) and X{x} = B (say) are two open sets in Tf .
Therfore A ∩ Y, B ∩ Y are two non-empty open subsets of Y .
Also, (A ∩ Y ) ∩ (B ∩ Y ) = ∅ and (A ∩ Y ) ∪ (B ∩ Y ) = Y .
Thus, A ∩ Y and B ∩ Y forms a separation of Y .
Therefore Y is not connected.
In this manner we can prove all the sets having more than one point in the co-finite
topological space is not connected.
Hence, only connected subsets of the co-finite topological space X are the single point
sets, i.e, X is totally disconnected.
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4.2 Path connected:

Given points x and y of the space X. A path in X from X to y is a continuous map
f : [a, b] → X of some closed intervals in R into X such that f(a) = x and f(b) = y.
A set X is said to be path connected if every pair of points of X can be joined by a
path.

Theorem: Any path connected space is connected.
Proof:

Let X be a path connected space, i.e, every pair of points in X is can be joined by a
path.
If possible, let X is not connected. Then there exists a separation of X, say A,B be
a separation of X.
Therefore, A,B be two non-empty,disjoint, open subsets of X such that A ∪B = X.
As, X is path connected, so let f : [a, b] → X be any path in X, where f(a) ∈
A, f(b) ∈ B.
Since, image of a connected set is connected under a continuous map, f([a, b]) is con-
nected.
∴ f([a, b]) either lies in A or in B.
Therefore, there is no such path to join a point in A to a point in B, which is a
contradiction as X is path connected.
Hence, X is connected.

Note: Every connected set may not be path connected.
e.g, Consider the following subsets of R2,
A = {(x, y) : 0 ≤ x ≤ 1; y = x

n
;n ∈ N}

B = {(x, 0} : 1
2
≤ X ≤ 1}
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As A is a union of arbitrary connected lines having a common point (0, 0), A is
connected.
Also B is connected as it is an interval on R.
Here, each point of B is a limit point of A.
Therefore, A ∪B has no separation, i.e, A ∪B is connected.
But there does not exist any path to join a point in A and a point in B.
Hence, A ∪B is not path connected.

For this example, if we take B = {(x, 0) : 0 ≤ x ≤ 1}, then A ∪ B will be a
path connected space.
So for this example of proving A ∪B is connected but not path connected, the max-
imum range of B should be B = {(x, 0) : 0 < x ≤ 1}.

Intermediate value theorem: Let f : X → Y be a continuous map, where X
is a connected space and Y is an ordered set in the order topology. If a and b are two
points of X and if r is a point of Y lying between f(a) and f(b), then there exists a
point c of X such that f(c) = r
Proof: Assume the hypotheses of the theorem. The sets

A = f(X) ∩ (−∞, r) and B = f(X) ∩ (r,+∞)

are disjoint, and they are nonempty because one contains f(a) and the other contains
f(b). Each is open in f(X), being the intersection of an open ray in Y with f(X).
If there were no point c of X such that f(c) = r, then f(X) would be the union of
the sets A and B. Then A and B would constitute a separation of f(X), contradict-
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ing the fact that the image of a connected space under a continuous map is connected.

Note: The intermediate value theorem of calculus is the special case of this the-
orem that occurs when we take X to be a closed interval in R and Y to be R.

Let us take some more examples of connected space which is not path connected.

Example-1:

We previously know about l20. We are going to prove this topological space as not
path connected.
l20 satisfies the condition of linear continuum and hence it is a linear continuum, which
implies l20 is connected.
Let p = 0× 0 and q = 1× 1.
Let us assume that l20 is path connected. Then there exists a path f : [a, b] → l20 with
f(a) = p, f(b) = q.
Since f is continuous then by Intermediate value theorem, f([a, b]) must contain every
point x× y of I20 .
Then for each x ∈ I, f−1(x× (0, 1)) = Ux (say).
Then Ux is non-empty open subset of [a, b] as f is continuous. Then for a fixed x ∈ I,
let a rational number qx ∈ Ux in in such a way that if x, y are two disjoint element in
I, then Ux and Uy are also disjoint.
Therefore, if we take an map x → qx, it is an injective mapping of I into Q.
This contradicts the fact that the interval I is uncountable.
So, our assumption is wrong and hence l20 is not path connected.

Example-2: Let us take another example of connected space which is not path
connected.
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Let S = {x× sin( 1
x
) : 0 < x ≤ 1}

Since S is the image of connected set (0, 1] under a continuous map, then S is con-
nected.
Then also S̄ (closure of S in R2) is also connected.
Here, S̄ = S ∪ ({0} × [−1, 1]).
If possible, let S̄ is path connected. Then there exists a path f : [a, c] → S̄ beginning
at the origin and ending at a point of S.
The set {t ∈ [a, c] : f(t) ∈ {0} × [−1, 1]} is closed as it is pre-image of the a closed
set under a continuous map.
So, this set has the largest element, say b.
Then also f : [b, c] → S̄ is also a path which maps b into {0} × [−1, 1] and all the
other elements in S.
Now, for any δ > 0,
b < 2

(4n−3)π
< b+ δ and b < 2

(4n−1)π
< b+ δ for some n ∈ N.

Let f(t) = (γ1(t), γ2(t)), where

γ1(t) = t ∀t ∈ (b, c]

γ2(t) = sin(
1

t
) ∀t ∈ (b, c]

γ1(b) = 0, γ2(b) ∈ [−1, 1]

Let t1 =
1

(4n−3)π
> b, then γ2(t1) = sin( (4n−3)π

2
) = 1

Again, let t2 =
1

(4n−2)π
> b, then γ2(t2) = sin( (4n−1)π

2
) = −1, where b < t1, t2 < b+ δ

Now, |γ2(t1)− γ2(t2)| = |1− (−1)| = 2
Which implies that γ2 is not continuous, which contradicts the fact that f is contin-

23



uous.
So, our assumption is wrong.
Hence, S̄ is not connected.

4.3 Components:

If (X, T ) is a topological space, define an equivalence relation on X by setting x ∼ y
if there is a connected subspace of X containing both x, y.
The equivalence class are called components or connected components of X.

Let us take a topological space as example to understand the components.
Example: Let X = {1, 2, 3} and T = {∅, X, {2}, {1, 3}}. Let us check the compo-
nents of X.
Here, {2}, {1, 3} forms a separation of X, hence X is not connected.
Let us check all the subspace of X for their connectedness.
Y1 = {1}, then TY1 = {U ∩ Y1 : U is open in X} = {∅, Y1}, is connected.
Y2 = {2}, then TY2 = {U ∩ Y2 : U is open in X} = {∅, Y3}, is connected.
Y3 = {3}, then TY3 = {U ∩ Y3 : U is open in X} = {∅, Y3}, is connected.
Y4 = {1, 2}, then TY4 = {U ∩ Y4 : U is open in X} = {∅, Y4, {1}, {2}}, is not con-
nected.
Y5 = {2, 3}, then TY5 = {U ∩ Y5 : U is open in X} = {∅, Y5, {2}, {3}}, is not con-
nected.
Y6 = {1, 3}, then TY6 = {U ∩ Y6 : U is open in X} = {∅, Y6}, is connected.
So, there are four connected subspaces of X as Y1 = {1}, Y2 − {2}, Y3 = {3}, Y6 =
{1, 3}.
Since Y1, Y3 ⊆ Y6, there are two components {2} and {1, 3} of the space X such that
X = {2} ∪ {1, 3}

Theorem: The components of a topological space X are connected disjoint sub-
space of X whose union is X, such that for each non-empty connected subspace of X
intersects only one of them.
Proof: As components are equivalent class, then components of X are disjoint and
their union is X.
Let A be a non-empty connected subspace of X. If possible let A intersects two
components C1 and C2 of X atleast in one points, say x1 and x2 respectively.
i.e,

x1 ∈ C1 ∩ A

x2 ∈ C2 ∩ A
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Then, x1 ∼ x2, as x1, x2 belongs to a connected space A.
So, x1, x2 have same equivalence class but in different components. It can not be
possible. The only possibility is C1 = C2

Now, the only proof left is to prove that a component C is connected.
Let x0 ∈ C, then ∀x ∈ C, x0 ∼ x.
Then there exists a connected subspace Ax containing x0, x and Ax ⊆ C.
Then C = ∪x∈CAx.
Since all Ax are connected with common point x0, then the union is also connected.
Therefore, C is connected.
This completes the proof.

Path component: We define an equivalence relation on the space X by define,
x ∼ y if there is a path in X from x to y. The equivalence classes are called path
components.

Theorem: The path components of X are path connected disjoint subspace of X
whose union is X such that every non-empty path connected subspace of X intersects
only one of them.
Proof: As path components are equivalence class, then path components are disjoint
and their union is X.
Let A be a non-empty path connected subspace of X.
If possible let A intersects two path components C1 and C2 of X atleast in one points,
say x1 and x2 respectively.
i.e,

x1 ∈ C1 ∩ A

x2 ∈ C2 ∩ A

Then, x1 ∼ x2, as x1, x2 belongs to a path connected space A.
So, x1, x2 have same equivalence class but in different path components. It can not
be possible. The only possibility is C1 = C2

Now, the only proof left is to prove that a path component C is path connected.
Let x0 ∈ C, then ∀x ∈ C, x0 ∼ x.
Then there exists a path connected subspace Ax containing x0, x and Ax ⊆ C.
Then C = ∪x∈CAx.
Since all Ax are path connected with common point x0, then the union is also path
connected.
Therefore, C is path connected.
This completes the proof.

Note: Now there is a question from the above theorem can be raised.
We said here that, Every path coconnected subspace of X can only intersect one path
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component of X.
Also, in the previous theorem we learned, every connected subspace of X can only
intersect one component.
It is very clear that a path connected set is connected and a path component is a
component of X.
So, the second theorem itself implies the first one. Now, what if we try to use the
first condition in the second theorem?
i,e, Can a non-empty connected space intersect two path components?

For this check, we will try with an familiar example where the path connection was
not established, which is the topologists sine curve.

As we have seen before, this is not path connected but connected. Moreway, there
is two path components {0} × [−1, 1] and the rest of the set, i.e, the blue and red
shades in the above figure.
But this set is connected. so if we take the whole set as A, a connected subspace, it
intersects both its components.
That is why we used a path connected supspace instead of a connected subspace.

This topologist sine curve is very important because it can be used in various theories
to verify or disown.
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There is one more topic in connectedness and that is the locally connectedness. As
like it names it conclude local connectedness.

Locally connected space: A topological space X is said to be locally connected at
x if for every neighbourhood U of x, there exists a connected neighbourhood V of x
contained in U .
If the space X is locally connected at each of it’s points in X, then this space X is
called the locally connected space.

4.4 Locally path connected space:

A topological space X is said to be locally path connected at x if for every neighbour-
hood U of x, there exists a path connected neighbourhood V of x contained in U .
If the space X is locally path connected at each of it’s points in X, then this space
X is called the locally path connected space.

Let us see through some examples whether they are connected,locally connected,
both or neither.

Examples:
(i) Every discrete topological space X is locally connected but not connected if X has
more than one points.
(ii) Every intervals and rays in the real line (R) with respect to the usual topology
are both connected and locally connected.
(iii) The subspace [−1, 0) ∪ (0, 1] of R is locally connected but not connected.
(iv) The topologists sine curve is not locally connected ( As, we can not find a con-
nected neighbourhood for the point (0, v), where v is the largest point of the set
{0} × [−1, 1]) but connected.
(v) Q is neither connected nor locally connected.

Theorem: A space X is locally connected if and only if for every open set U of
X, each component of U is open in X.
Proof: Suppose that X be locally connected. Let U be an open set in X and C be
a component of U . Let x ∈ C, then x ∈ U .
Now, since X is locally connected, there exists a connected neighbourhood V of x
such that x ∈ V ⊆ U .
Since x ∈ V and x ∈ C and also C is an component then x ∈ V ⊆ C. Which implies
that C is open.
Therefore, C is open in X.
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Conversely, suppose that components of all the open sets of X are open.
Let x ∈ X be any point and U be a neighbourhood of x.
Let C be a component of U , which contains x.
Now from the assumption, C is connected and open in X.
As x is arbitrary, then ∀x ∈ X and for all neighbourhood U of x, there exists a
connected neighbourhood (open set) C if x such that x ∈ C ⊆ U .
Therefore, X is locally connected.

We have similar theorem for the locally path connected space.

Theorem: A space is locally path connected if and only if for every open set U
of X, each path component of U is open in X.

the proof is exactly similar to the before, so we are skipping this.

Theorem: Prove that every component C of a space is closed.
Proof: Given, C is a component of a topological space. Then C is connected.
We know that C is connected =⇒ C̄ is connected. Also C ⊆ S̄
As C is a component i.e, C is some maximum connected set, then C = C̄.
Therfore C is closed.

The relation between path components and components is given in the following
theorem:

Theorem: If X is a topological space, each path component of X lies in a com-
ponent of X. If X is locally path connected, then the components and the path
components of X are the same.
Proof: Let C be a component of X; let x be a point of C; let P be the path compo-
nent of X containing x. Since P is connected, P ⊂ C. We wish to show that if X is
locally path connected, P = C. Suppose that P ⊊ C. Let Q denote the union of all
the path components of X that are different from P and intersect C : eacb of them
necestarily lies in C, so that

C = P ∪Q.

Because X is locally path connected, each path component of X is open in X.
Therefore, P (which is a path component) and Q (which is a union of path compo-
nents) are open in X, so they constitute a separation of C. This contradicts the fact
that C is connected.
Hence, the theorem is proved.
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4.5 More theories on connectedness:

1. With the help of connectedness property, we can prove that (0, 1), (0, 1] and [0, 1]
all are not homeomorphic.
We are taking the sets (0, 1) and (0, 1]. We are assuming that these two sets are
homeomorphic.
Now if we remove the point 1 from the set (0, 1], then it becomes (0, 1) and it is still
a connected set. But if we remove one any one point from the set (0, 1), it turns into
a disconnected set.
As connectedness is a topological space, i.e, all the homeomorphic sets to a connected
set is connected, it contradicts that (0, 1) and (0, 1] are homeomorphic.
In this way, we can prove that [0, 1] is also not homeomorphic to the above two sets
by removing two points 0,1 from it.

2. We can prove that R2 − A is a connected space for any countable set A.
For this we are taking A as the largest countable set in R2, i.e, A = Q × Q.
Then R2 − A = (Qc × Qc) ∪ (Q × Qc) ∪ (Qc × Q).
So, there can be three types of points in R2 − A as (i1, i2), (i1, r1), (r2, i4), where
i1, i2, i3, i4 ∈ Qc and r1, r2 ∈ Q.

In the above image all the red lines are the path in the set R2 −A and in the picture
we can see that all the above points can be always connect through a path. If we
keep changing the points we can see that union these lines (paths) will cover all of
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R2 − A.
So, R2 − A is path connected and hence connected.

Now, if we talk about general vesion of this theory, that is A is any countable set in
R2.
Then for any point in R2 − A, there is uncountable number of lines passing through
which does not intersects A.
For any two points in R2 −A, there is a pair of lines that do intersect each other but
do not intersect A. So we can say, both the points are connected through a path.
Therefore R2 − A is path connected and hence connected.

3. If we take a subspace Y = [−1, 0) ∪ (0, 1] of the topological space X = R, then
clearly Y has a separation. We are going to prove it theoritically.
Let A = [−1, 0) and B = (0, 1] be two subsets of Y .

Now, A ̸= ∅, B ̸= ∅ A ∩B = ∅ and A ∪B = Y
Here, we can skip the open set condition and instead of that we are going to use the
condition of containing limit points.
i.e,

Ā ∩B = [−1, 0] ∩ (0, 1]

= ∅
A ∩ B̄ = [−1, 0) ∩ [0, 1]

= ∅

Therefore, A,B be two non-empty,disjoint subset of Y , whose union is Y and neither
of A,B contains a limit point of other.
∴ A,B forms a separation of Y and hence Y is not connected.

4. In the previous way we tried we can directly say that Y = [−1, 1] is a con-
nected subspace of X = R.
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As, to find a separation, we can try in a way like, A = [−1, 0) and B = [0, 1]. Then
A,B satisfies all the three conditions but

Ā ∩B = [−1, 0] ∩ [0, 1]

= {0}
= ∅

So, A,B can not form a separation of Y and hence Y is connected.

5. From the study of real analysis we know that the set of all rational number Q
is densed but not connected due to the presence of irrational numbers.
Now let us prove this with the connectedness property of topological space.
Let Y = Q be a subspace of the topological space X = R. Let a ∈ Qc be any irrational
number.
Consider A = (−∞, a) ∩ Y ̸= ∅ and B = (a,∞) ∩ Y ̸= ∅
Also, A ∩B = ∅ and A ∪B = Y
Since, (−∞, a) and (a,∞) are open in X = R, then A,B are open in Y = Q
Hence, A,B forms a separation of Q which means Q is not connected.

6. When we discuss about the topological space R we declare it as a connected
space. But it should be noted that we only discuss about the usual topology on R.
Let us check if the topological space R is connected with respect to the lower limit
topology.
In lower limit topology we have basis elements in [a, b) form. So, to find a separation,
let B = [0,∞) be an open set and let A = (−∞, 0).
Here, A ̸= ∅, B ̸= ∅.
A ∩B = ∅, A ∪B = R
So, the only things require to A,B forms a separation of R is prove that (−∞, 0) is
an open set.
We know that, [−n, 0) is an open set in Rl for all n ∈ R.
Thus ∪n∈R[−n, 0) = (−∞, 0) is an open set as union of arbitrary open sets is open.
Hence, A,B forms a separation of Rl which implies that Rl is not connected.

So, here we can see that connectedness of a topological space depends on the topology
defined on it.

7. We already know about connectedness of a finite sequence. Now the question
is how connectedness occurs in infinite sequence.
Suoppose, {Aα} be a collection of connected subspaces of X. Let A be another con-
nected subspace of X. Then A∪ (∪Aα) is connected if A∩Aα ̸= ∅ ∀α or A∩Aα ̸= ∅
for any one α and the subspace ∪Aα is connected.
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As we can see, the first condition is more general condition to prove. So, let us take
the first condition and then prove it.
Let A ∪ (∪Aα) = B. Now if possible let, C,D forms a separation of B. As A is
connected, A lies either in C or in D.
Without loss of generality, let A lies in C ,i.e, A ⊆ C.
As, A ∩ Aα ̸= ∅ ∀α then Aα ⊆ C ∀α. Which further implies D = ∅.
We get a contradiction of our assumption.
Hence, B = A ∪ (∪Aα) is connected.

8. Theorem: Let E be a subset of the real line R containing at least two points.
Then E is connected if and only if E is an interval.
Solution: suppose E not be and interval and contain atleast two point in R

∃a, b ∈ E and ∃p ̸∈ E such that a < p < b

Let G = (−∞, p) and H = (p,∞), then a ∈ G and b ∈ H. So, E ∩G and E ∩H be
two non-empty disjoint open sets whose union is E.
Therefore, G,H forms a separation of E.
Hence, if E is connected, it’s an internal in R.
Conversely, let E be an internal in R. If possible, let E be disconnected. Then there
exists a separation of E, say G,H forms a separation of E.
As, G,H is open in E, an interval in R, then

G = (−∞, p) ∩ E and H = (p,∞) ∩ E for some p ∈ E

Then we will always found a

p ∈ E but p ̸∈ G ∪H

So G ∪H ̸= E, which contradicts that G,H forms a separation of E.
Therefore, E is connected.
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We can prove the converse part in another words, i.e, let E be an inter-
val in R. Then E is homeomorphic to either of these following sets

(0, 1) or [0, 1] or (0, 1] or [0, 1)

As connectedness is a topological property, and all the above sets are connected,
therefore E is connected.

9. From the definition of components, we know that each elements of a compo-
nent have an equivalence relation between them.
It is also known from the set theory, that equivalence classes create a partition on a
set. So we can claim that,
Components of X form a partition on X.

10. Prove that, if U be an open connected subspace of R2, then U is path connected.

Proof: Let x ∈ U be a point and A = {y ∈ U : x and y are path connected}.
So A ⊆ U be a path connected subspace, as in R2 every subspace is locally path
connected.
Also, as x ∈ A, A is non-empty.

If possible, let A ̸= U . Since U is connected and A is open, U \A must also be open
in U (as U being open in R2 makes A and U \A relatively open in U).This contradicts
the connectedness of U because U would then be the union of two non-empty disjoint
open sets A and U \ A.

Therefore, A = U , meaning every point in U can be connected to x by a continuous
path.

11. The components of a totally disconnected space X are the singleton subsets
of X. As,
Let E be a component of X and suppose

p, q ∈ E with p ̸= q

Since X is totally disconnected, there exists a disconnection G ∪ H of X such that
p ∈ G and q ∈ H. Consequently, E ∩ G and E ∩H are non-empty and so G ∪H is
a disconnection of E. But this contradicts the fact that E is a component and so is
connected.
Hence E consists of exactly one point.

12. Let E be a component in a locally connected space X. Then E is open. As,
Let p ∈ E. Since X is locally connected, p belongs to at least one open connected set
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Gp. But E is the component of p; hence

p ∈ Gp ⊂ E and so E =
⋃

{Gp : p ∈ E}

Therefore E is open, as it is the union of open sets.

13. Definition: A space X is said to be weakly locally connected at x if
for every neighborhood U of x, there is a connected subspace of X constrained in U
that contains a neighborhood of x.

Now, we want to show that if X is weakly locally connected at each its points,
then X is locally connected.

Here we show as the hint suggested that a component of an open subset of X is
open. Let U be open in X and C ⊆ U be its component. For any point x ∈ C ⊆ U
there is a connected subspace Sx ⊆ X and an open neighborhood Vx such that
x ∈ Vx ⊆ Sx ⊆ U . Since Sx is a connected subset of U, Sx ⊆ C. Therefore, C is the
union of Vx for all x ∈ C and is open. Another way to prove this is to show that the
space is locally connected at every point. This way might be better considering the
next exercise (in the proof we should somehow use the fact that the space is weakly
locally connected at every point, or at least at every point in some neighrborhood of
x, to prove that it is locally connected at x ). Let U be a neighborhood of x. There
is a connected subspace S such that it contains a neighborhood of x. Suppose there
is a neighborhood of x such that the space is weakly locally connected at every point
in the neighborhood. The intersection of these two neighborhoods of x is a neighbor-
hood V of x such that it is contained in S and the space is weakly locally connected
at every point in the neighborhood. If C is a component of V containing x then every
point in C is contained in a connected subspace that a) has to be contained in C and
b) contains a neighborhood of the point. Therefore, as before, we conclude that C is
open in V , and, therefore, in X, contains x and is connected. I.e. the space is locally
connected at x. Note that for this to be true we need the space to be weakly locally
connected not only at the point x but at any point in some neighborhood of x.

The next theory shows that weak local connectedness at the point only does not
imply the local connectedness at the point.

14. Consider the "infinite broom" X (shown in the below figure). X is not lo-
cally connected at p but weakly locally connected at p.
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Applications of Connectedness

Connectedness is a fundamental concept in topology that has numerous applications
across various fields of mathematics and science. Below is a detailed insight into the
application of connectedness:

1. Analysis and Continuous Functions

• Intermediate Value Theorem: Connectedness is essential in the proof of the
Intermediate Value Theorem, which states that if a continuous function f from
a connected interval I to R takes values a and b at any two points in I, it also
takes any value between a and b within I.

• Connected Sets and Continuity: The image of a connected set under a
continuous function is connected. This property is used to analyze the behavior
of continuous functions, especially in complex analysis and real analysis.

2. Topology and Geometry

• Path-Connected Spaces: Connectedness helps in classifying topological spaces.
Path-connected spaces, where any two points can be joined by a continuous path,
simplify the study of topological properties.

• Separation and Compactness: Connectedness is used in conjunction with
compactness to understand the structure of topological spaces. For example,
the fact that the continuous image of a compact connected space is compact and
connected helps in various geometric proofs.

3. Complex Analysis

• Analytic Continuation: In complex analysis, connectedness is crucial for the
concept of analytic continuation, where a holomorphic function defined on a
connected open subset can be extended to a larger domain.

• Riemann Surfaces: The study of Riemann surfaces, which are connected com-
plex manifolds, relies heavily on connectedness to ensure the surface behaves as
a single entity.

4. Dynamical Systems

• Phase Space Analysis: In the study of dynamical systems, connectedness of
phase space components helps in understanding the behavior of trajectories over
time. Stable and unstable manifolds are typically connected.
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• Invariant Sets: The concept of connectedness is used to study invariant sets un-
der dynamical systems, which are crucial for understanding long-term behavior
and stability.

5. Algebraic Topology

• Homotopy and Fundamental Group: Connectedness is foundational in
defining the fundamental group, which measures the loops in a space. Path-
connected spaces ensure that the fundamental group is well-defined.

• Covering Spaces: Connectedness plays a role in the theory of covering spaces,
where the properties of a covering space are deeply linked to the connectedness
of the base space.

6. Mathematical Physics

• Quantum Mechanics: In quantum mechanics, the connectedness of configura-
tion spaces ensures the proper definition of wave functions and their evolution.

• Relativity: In general relativity, the connectedness of spacetime ensures that
the fabric of space and time is continuous, which is crucial for the definition of
causal relationships and the propagation of signals.

7. Differential Equations

• Existence of Solutions: Connectedness is used in proving the existence of
solutions to differential equations. For example, solutions to certain differential
equations may be connected curves in the solution space.

• Boundary Value Problems: Connectedness helps in understanding the struc-
ture of solution sets for boundary value problems, ensuring that solutions form
continuous families.

8. Graph Theory

• Connected Graphs: In graph theory, connectedness ensures that there is a
path between any two vertices in a graph, which is essential for network design,
communication, and transportation problems.

• Component Analysis: The study of connected components in a graph helps
in clustering, finding communities in social networks, and analyzing molecular
structures in chemistry.
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9. Data Science and Machine Learning

• Clustering Algorithms: Connectedness is a key concept in clustering algo-
rithms like DBSCAN (Density-Based Spatial Clustering of Applications with
Noise), where clusters are formed based on the density and connectivity of points.

• Topological Data Analysis: Connectedness is used in persistent homology,
a method in topological data analysis that studies the shape of data and its
features at different scales.

Conclusion

Connectedness is a versatile and powerful concept in topology with wide-ranging
applications in various branches of mathematics and science. Its role in ensuring
the integrity and continuity of spaces makes it a fundamental property used to solve
complex problems and understand intricate structures.
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5 Compactness:

The notion of compactness is not nearly so natural as that of connectedness. From
the beginnings of topology, it was clear that the closed interval [a, b] of the real line
had a certain property that was crucial for proving such theorems as the maximum
value theorem and the uniform continuity theorem. But for a long time, it was not
clear how this property should be formulated for an arbitrary topological space. It
used to be thought that the crucial property of [a, b] was the fact that every infinite
subset of [a, b] has a limit point, and this property was the one dignified with the
name of compactness. Later, mathematicians realized that this formulation does not
lie at the heart of the matter, but rather that a stronger formulation, in terms of
open coverings of the space, is more central. The latter formulation is what we now
call compactness.
It is not as natural or intuitive as the former; some familiarity with it is needed before
its usefulness becomes apparent.

Definition (cover and open cover) : A collection A of subsets of a space X
is said to cover X, or to be a covering of X, if the union of the elements of A is equal
to X. It is called an open covering of X if its elements are open subsets of X.

Definition (compact space) : A space X is said to be compact if every open
covering A of X contains a finite subcollection that also covers X.

Let’s check some popular topological spaces whether they are compact or not.

EXAMPLE 1 The real line R is not compact, for the covering of R by open in-
tervals

A = {(n, n+ 2) | n ∈ Z}
contains no finite subcollection that covers R.

EXAMPLE 2 The following subspace of R is compact:

X = {0} ∪ {1/n | n ∈ Z+} .

Given an open covering A of X, there is an element U of A containing 0 . The set
U contains all but finitely many of the points 1/n; choose, for each point of X not in
U , an element of A containing it. The collection consisting of these elements of A,
along with the element U , is a finite subcollection of A that covers X.

EXAMPLE 3 Any space X containing only finitely many points is necessarily com-
pact, because in this case every open covering of X is finite.
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EXAMPLE 4 The interval (0, 1] is not compact; the open covering

A = {(1/n, 1] | n ∈ Z+}

contains no finite subcollection covering (0, 1]. Nor is the interval (0, 1) compact; the
same argument applies. On the other hand, the interval [0, 1] is compact; you are
probably already familiar with this fact from analysis. In any case, we shall prove it
shortly.

In general, it takes some effort to decide whether a given space is compact or not.
First we shall prove some general theorems that show us how to construct new com-
pact spaces out of existing ones. Then in the next section we shall show certain
specific spaces are compact. These spaces include all closed intervals in the real line,
and all closed and bounded subsets of Rn.

Let us first prove some facts about subspaces. If Y is a subspace of X, a collec-
tion A of subsets of X is said to cover Y if the union of its elements contains Y .

Lemma Let Y be a subspace of X. Then Y is compact if and only if every cov-
ering of Y by sets open in X contains a finite subcollection covering Y .
Proof Suppose that Y is compact and A = {Aα}α∈J is a covering of Y by sets open
in X. Then the collection

{Aα ∩ Y | α ∈ J}
is a covering of Y by sets open in Y ; hence a finite subcollection

{Aα1 ∩ Y, . . . , Aαn ∩ Y }

covers Y . Then {Aα1 , . . . , Aαn} is a subcollection of A that covers Y .
Conversely, suppose the given condition holds;we wish to prove Y compact.
Let A′ = {A′

α} be a covering of Y by sets open in Y . For each α, choose a set Aα

open in X such that
A′

α = Aα ∩ Y.

The collection A = {Aα} is a covering of Y by sets open in X. By hypothesis, some
finite subcollection {Aα1 , . . . , Aαn} covers Y . Then

{
A′

α1
, . . . , A′

αn

}
is a subcollection

of A′ that covers Y .
Hence, the statement is proved.

Theorem Every closed subspace of a compact space is compact.
Proof: Let Y be a closed subspace of the compact space X. Given a covering A of
Y by sets open in X.
Let us form an open covering B of X by adjoining to A the single open set X − Y ,
that is,

B = A ∪ {X − Y }.
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Now, Some finite subcollection of B covers X. If this subcollection contains the set
X − Y , we will discard X − Y .
Otherwise, leave the subcollection alone. The resulting collection is a finite subcol-
lection of A that covers Y .
Which completes the proof.

Theorem Every compact subspace of a Hausdorff space is closed.

Proof: Let Y be a compact subspace of the Hausdorff space X. We shall prove
that X − Y is open, so that Y is closed.

Let x0 be a point of X−Y . We show there is a neighborhood of x0 that is disjoint
from Y .

Now, for each point y of Y , let us choose disjoint neighborhoods Uy and Vy of
the points x0 and y, respectively (using the Hausdorff condition). The collection
{Vy | y ∈ Y } is a covering of Y by sets open in X; therefore, finitely many of them
Vy1 , Vy2 , . . . , Vyn cover Y . The open set

V = Vy1 ∪ Vy2 ∪ · · · ∪ Vyn

contains Y , and it is disjoint from the open set

U = Uy1 ∩ Uy2 ∩ · · · ∩ Uyn

formed by taking the intersection of the corresponding neighborhoods of x0. For if z
is a point of V , then z ∈ Vyi for some i, hence z /∈ Uyi and so z /∈ U . (described in
the below figure)

Then U is a neighborhood of x0 disjoint from Y , as desired.

In the proof of the above theorem, we proved another very important statement
which will be further required. We are mentioning this statement for later uses.
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Lemma: If Y is a compact subspace of the Hausdorff space X and x0 is not in
Y , then there exist disjoint open sets U and V of X containing x0 and Y , respectively

From the previous two theorems, we get that every closed subspace of a compact
space is compact and every compact subspace of a compact space is closed, but for
the second condition, Hausdorff property is required.

Which means there is some examples of compact spaces which is not Hausdorff
and whose compact subspaces are not closed.

e.g, Let us take the subspace as Co-finite topology on R. Here, every subspace of
R is compact but only closed sets in this topology are the finite sets.

Also in this space, the Hausdorff property is not satisfied. Hence, for the second
theorem, Hausdorff property is required.

theorem The image of a compact space under a continuous map is compact.

proof: Let f : X → Y be continuous; let X be compact. Let A be a covering of
the set f(X) by sets open in Y . The collection

{f−1(A) | A ∈ A}

is a collection of sets covering X; these sets are open in X because f is continuous.
Hence finitely many of them, say

f−1(A1), f
−1(A2) . . . , f

−1(An),

cover X, as X is compact. Then the sets A1, A2, . . . , An cover f(X).

theorem Let f : X → Y be a bijective continuous function. If X is compact and
Y is Hausdorff, then f is a homeomorphism.

proof: To prove that f is a homeorphism, we need to show that f−1 is contin-
uous. For that, we shall prove that images of closed sets of X under f are closed in Y .

Let A be any closed subspace of X, which is a compact space. Then A is a compact
subspace of X.

Now, as f is continuous so f(A) is also compact subspace of Y , as under continu-
ous map image of compact subspace is compact.
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Since, Y is a Hausdorff space and f(A) is a compact subspace of Y , so f(A) is
closed in Y . Hence f−1 is continuous.

Therefore, f is a homeomorphism. Which completes the proof.

Now, like connectedness we should discuss compctness on the product topological
spaces too.

Theorem: The product of finitely many compact spaces is compact.

There is nothing more specefic about proof of this theorem. But here comes an
important concept about tubes.

The tube lemma: Consider the product space X × Y , where Y is compact. If
N be an open set of X × Y containing the slice x0 × Y of X × Y , then N contains
some tube W × Y about x0 × Y , where W is a neighbourhood of x0 in X.

The image given below explains a tube graphically.

Now, in the above theorem we talked about finite product of topological spaces.
So now the question is what about product of infinitely many compact topological
spaces? Is it compact or not?

The answer is "yes". Product of infinitely many compact spaces is compact under
the product topology and we find it from the Tychonoff theorem.
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5.1 Compactness on R

At the introduction part of this section we discussed about the topic of compactness
first shown in the real analysis. In studies of limits points, continuity, convergence
of sequences there was something important in the closed intervals [a, b]. So now we
will again come to the real numbers and will imply the theories of compactness on R.
Here, we will prove those concepts of compactness with the examples of real numbers.

So, at first we will start with some theorems.

Theorem: Let X be a simply ordered set having the least upper bound property. In
the ordered topology, each closed interval in X is compact.

Proof: Given that X is an ordered set. Then choose a < b, Let A be an open
covering of [a, b] by sets open in [a, b] by subspace topology (Here it is ordered topol-
ogy). We want to prove that there exists a finite subcollection of A which covers
[a, b].

Now, if we take any point x ∈ [a, b] such that x ̸= b, then there exists a point y in
[a, b] with x < y. We will show that the interval [x, y] can be covered by atmost two
elements of A.

Case 1 If x has a immediate successor in X, let y be that immediate successor of
x and hence [x, y] consists of only two points x and y. So, this can be easlily covered
by two elements of A.

Case 2 If x has no immediate successor in X, then we choose an element A of A
which contains x. As x ̸= b and A is an open set in X, then A contains an interval
of the form [x, c) for some c ∈ [a, b].
We will choose a point y ∈ [x, c), then we find an interval [x, y] which is covered by
a single element A of A.

Now, let C be the set of all points y > a of [a, b] such that the interval [a, y] can
be covered by a finite subcollection of A. Here, C is non-empty, so applying least up-
per bound property, there exist a least upper bound c of the set C such that a < c ≤ b.

Now, the only remaining proof is [a, c] can be covered by finitely many elements of
A. Let us choose an element A from A which contains c. Since A is open it contains
an interval (d, c] for some d ∈ [a, b].
If c is not in C, then there exists a point z of C lying in the interval (d, c), as other-
wise d would be smaller upper bound of C than c (The scenario is given in the below
figure).
Since z ∈ C the interval [a, z] can be covered by finitely many elements of A, say n
number of elements. Also [z, c] lies in a single element A of A.
Hence, [a, c] = [a, z] ∪ [z, c] can be covered by n+ 1 elements of A. Thus c ∈ C.
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Finally, we claim that c = b.
If possible, let c < b. Then we take x = c and therefore there exists a point y > c
of [a, b] such that the interval [c, y] can be covered by finite elements of A. Also we
proved that [a, c] can be covered by finite elements of A. Therefore the interval

[a, y] = [a, c] ∪ [c, y]

can also be covered by finitely many elements of A, implies that y ∈ C.
This is a contradiction of the fact that c is an upper bound of C.
Hence, c = b.

So, we get that the interval [a, b] can be covered by a finite number of elements of
A. Therefore [a, b] is compact.

As we all know the set of real numbers R is an ordered set having least upper
bound property, so this theorem applies on R. i,e,

Corollary: Every closed interval in R is compact.

For more genereal approach if we consider the space Rn we will not have a proper
upper bound or boundedness on it. So we will take the help of metric for these issues.
It is previously mentioned that every metric spaces is also a topological space. So,
the theorem goes like,

Theorem: A subspace A of Rn is compact if and only if it is closed and is bounded
in the euclidean metric d or the square metric ρ.

Extreme value theorem: Let f : X → Y be continuous, where Y is an ordered
set in the order topology. If X is compact, then there exist two points c, d ∈ X such
that

f(c) ≤ f(x) ≤ f(d) for every x ∈ X
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The lebesgue number lemma: Let A be an open covering of the metric space
(X, d). If X is compact, there is a δ > 0 such that for each subset of X having
diameter less than δ, there is an element of A containing it.

The number δ is called a Lebesgue number for the open covering A.

Proof: Given, A is an open covering of X.
If X itself is an element of A, then any positive number is a lebesgue number for A.

Let us assume that X is not an element of A.
Let us choose a finite subcollection {A1, A2, · · · , An} of A.
Let Ci = X −Ai for all i = 1, 2, · · · , n and let us define a function f : X → R defined
by

f(x) =
1

n

n∑
i=1

d(x,Ci)

Now, we will show that, f(x) > 0 ∀ x ∈ X.
Let x ∈ X, then x ∈ Ai for some i ∈ {1, 2, · · · , n}. Let us choose a ϵ > 0 such that
ϵ- neighbourhood of x lies in Ai.

Therefore f(x) ≥ ϵ

n

Hence,f(x) > 0

Since f is continuous an X is compact, then it has a minimum value, say δ. We claim
that this δ is our required lebesgue number.
Let B is a subset of X and x0 ∈ B. Also let diameter of B is less than δ, then B lies
in a δ- neighbourhood of x0.

Now,δ ≤ f(x0) ≤ d(x0, Cm)

Where d(x0, Cm) is the largest element of d(x0, Ci) ∀ i.
Then δ- neighbourhood of x0 is contained in the element Am = X − Cm of the

covering A.

46



Hence, the lemma got proved.

For checking the compactness in R, we just have one last theorem on countability.

Theorem: Let X be a non-empty compact Hausdorff space. If X has no isolated
point, then X is uncountable.

With the help of this theorem, we get that

Corollary: Every closed interval in R is uncountable.

5.2 Local compactness:

Here we will discuss about local compactness. This area is also important because
here we will learn to the topic of compactification.

This is a common topic that the set (a, b] is not compact but by just adding a
point a makes the set

{a} ∪ (a, b] = [a, b]

which is a compact set.
So there is some genereal theory not just for R but also for other spaces. At first we
need to understand the topic of locally compactness which is kind of similar to the
topic of locally connectedness. Let’s start with the defintion.

Definition: A space X is said to be locally compact at a point x if there is some
compact subspace C of X that contains a neighbourhood of x.

If X is locally compact at each of its points, then X is called locally compact.

By the defintion, it is clear that any compact space is always locally compact. Let
us see some examples whether they are locally compact spaces or not.

Example- 1 The real line R is a locally compact space. As if we take a point x
which lies in the interval (a, b) then there exists a compact subspace [a, b] of R which
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contains the neighbourhood (a, b).

Example- 2 The set of all rational numbers Q is not locally compact. As for x ∈ Q,
there exists a neighbourhood (a, b) ∩ Q of x.
Let q1, q2, · · · ∈ (a, b) ∩ Q and consider the collection,

E = {Ai open in Q : Ai contains only qi ∀ i ∈ Λ}

Then E is an open cover of the set (a, b) ∩ Q and E has no finite subcollection.

Therefore, any superset of (a, b) ∩ Q in Q is not compact.

Theorem: Let X be a space. Then X is locally compact Hausdorff if and only
if there exists a space Y satisfying the following condition.
(i) X is a subspace of Y .
(ii) The set Y −X consists of a single point.
(iii) Y is a compact Hausdorff space.

If Y and Y ′ are two spaces satisfying these conditions, then there is a homeomor-
phism of Y with Y ′ that equals to the identity map on X.

The statement of the above theorem is very important as it gives us further knowl-
edge of the topic compactification.

Compactification: If Y is a compact Hausdorff space and X is a proper subspace
of Y whose closure equals to Y , then Y is said to be a compactification of X.

If Y −X equals a single point, then Y is called the one-point compactification of X.

Let’s take a view on some examples of compactification.

Examples:
(i) The compactification of the space (0, 1) or (0, 1] or [0, 1) are the compact space

[0, 1] with respect to the usual topology.

(ii) The set of all real numbers R is a locally compact space but it is not compact.
So, we can use compactification on R.
From the real line we say there is some −∞,∞. If we add these two points into a
point(like geting a circle from a wire), then we find a circle S which is a compactifi-
cation of R.

The process is given in the below figure aboout how the point ∗ is created from
−∞ and ∞.
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(iii) By the exactly same argument from the example-(ii), it is very clear that the
one point compactification of the set R2 is homeomorphic to a sphere, say S2. (Here,
we take an infinite number of points to a single point, say ∗). The graphical repre-
sentation is given in the below figure.

There is another formulation of local compactness. This is equivalent to the def-
inition of the local compactness when the space is Hausdorff. For the general study,
let’s start this formulation as a theorem.

Theorem: Let X be a Hausdorff space. Then X is locally compact if and only
if given x in X, and given a neighbourhood U of x, there exists a neighbourhood V
of x such that V is compact and V ⊂ U .

Proof: Suppose for x ∈ X and a neighbourhood U of x, there exists a neighbourhood
V of X such that V is compact and V ⊂ U .
Then for x ∈ V (a neighbourhood of x) there exists a compact subspace V such that

x ∈ V ⊆ V
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Hence, X is locally compact at x.
Since x is arbitrary, X is locally compact.

Conversely, Suppose, X is locally compact.
Let x ∈ X and U be a neighbourhood of x.

As, X is a local compact space, there is an one point compactification Y of X,
which is compact.
Let C = Y − U , then C is closed in Y . Since, Y is compact and C is closed in Y , so
C is also compact. Then there exists two disjoint open sets V and W containing x
and C respectively
Here we find a V such that V is compact in Y , as V is closed in the compact space
Y .
Also V is disjoint from C.

i.e, V ∩ C = ∅
Hence, V ⊂ U

Which completes the proof.

Corollary: Let X be locally compact Hausdorff; let A be a subspace of X. If A
is closed in X or open in X, then A is locally compact.

Proof: Given that X is a locally compact Hausdorff space and A is a subspace
of X.

Suppose that A is closed in X. Let x ∈ A. As, X is locally compact and x ∈ X,
there exists a compact subspace C of X which contains a neighbourhood U of x.
As, C is compact and A is a closed subspace of X, then C ∩ A is closed in C and
hence compact. Also C ∩A contains the neighbourhood A∩U (open in A) of x in A.
As x is arbitrary, A is locally compact.

Suppose that A is open in X. Let X ∈ A.
As, X is a Hausdorff space, which is locally compact, using the above theorem we get
a V of X such that V ⊂ A and V is compact.
Then we find a C = V a compact subspace of A, which contains the neighbourhood
V of X in A.
As x is arbitrary, A is locally compact.

In the proof of the above corollary, if A is a closed space then the theorem is not
required. That means if X is not a Hausdorff space, A will be locally compact if A is
closed.
But for an open subspace A the Hausdorff property of X should be required.

Corollary: A space X is homeomorphic to an open subspace of a compact Hausdorff
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space if and only if X is locally compact Hausdorff.

Definition:(Equi-continuous): Let F be a collection of real valued continuous
functions in a metric space (X, d). Then F is called equi-continuous if for given
ϵ > 0, there exists δ > 0 such that whenever x, y ∈ X with d(x, y) < δ, then

| f(x)− f(y) |< ϵ ∀ f ∈ F

Before ending this part we should add one more theorem.

The Arzela-Ascoli Theorem: Let X be a compact metric space and F be a
subset of c(X), then F is compact if and only if F is closed, uniformly bounded and
equi-continuous.
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5.3 More theories on compactness:

In this section, we are going to discuss more topics on Compactness which will help
to understand some basic problems with more clear view and will also discuss some
advance topics.

So lets start them, one by one.

1. In some theories discussed before, we claimed that a topological space with
co-finite topology is compact. Here, we will prove that.
Let (X, T ) is a topological space, where T is the co-finite topology on the set X.
Let A be an open cover of the space X and let A ∈ A, then A is an open set of X.
Therefore, Ac contains finite number of elements, where, Ac means complement of A.
Let Ac contains n points of X, i.e,

let Ac = {a1, a2, · · · , an}

As, A is an open cover of X, then for each element of X, there exists an element of
A which contains the element of X.

i.e, ∀ ai ∈ Ac ∃ Ai ∈ A such that ai ∈ Ai ∀i = 1, 2, · · ·n

Then Ac ⊆
⋃n

i=1Ai ∀ i = 1, 2, · · · , n.
As. X = A ∪ Ac, then

X = A ∪ A1 ∪ A2 ∪ · · · ∪ An

So, we find a finite sub-collection of A which covers X. Hence X is compact

2. Theorem: Let A be a subset of the topological space (X, T ). Then the fol-
lowing conditions are equivalent.
(i) A is compact with respect to T
(ii) A is compaft with respect to the relative topology TA on A.

Proof: At first, we are going to show that (i) =⇒ (ii).
i.e, A is compact with respect to T .
Let A is a TA open cover of A. Then by the defintion of relative topology,

∀Ai ∈ A, ∃ Bi ∈ T such that Ai = A ∩Bi ⊂ Bi

Hence,
A ⊂ ∪iAi ⊂ ∪iBi

So, we can find a set B consists of those Bi which is a T open cover of A.
Now, as A is compact with respect to T then there exists a finite subcollection of B
which covers A.
Let {B1, B2, · · · , Bn} be a finite sub-collection of B which covers A. Then

∀Bi ∈ B ∃Ai ∈ A ∀i = 1, 2, · · · , n
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which covers A. It is because of the formation of all the Bi.
Hence, A is compact with respect to TA.

Now, we will show that (ii) =⇒ (i)
Let A is a compact space with respect to the relative topology T . Let B is a T open
cover of A. Then by the defintion of relative topology,

∀ Bi ∈ B ∃ Ai ∈ TA such that A ∩Bi = Ai

Taking these Ai, we make a collection A which is an open cover of A with respect to
TA.
Now, A is compact with respect to TA. So, there exists a finite subcollection of A
which covers A. Let {A1, A2, · · · , Am} covers A.
Then in the similar manner, we get {B1, B2, · · · , Bm}, a finite sub-collection of B
which covers A.
Hence, A is also compact with respect to the topology T .

3. From the previous theorem, we find a preceeding corollary,
Corollary: Let (Y, T ′) be a subspace of (X, T ) ans let A ⊂ Y ⊂ X. Then A is
T -compact if and only if A is T ′-compact.

4. There is another theorem on the basic of compactness. It can used as an al-
ternative defintion of compactness. As here we will consider the complements of the
elements of the open cover, that is some closed sets.
Theorem: Let (X, T ) is a topological space. Then the following statements are
equivalent.
(i) X is compact.
(ii) For every class {Fi} of closed subsets of X, ∩iFi = ∅ implies {Fi} contains a finite
subcollection {F1, F2, · · · , Fn} with F1 ∩ F2 ∩ · · · ∩ Fn = ∅.

Proof: First, we will prove that (i) =⇒ (ii)
Then X is a compact space. Let ∩iFi = ∅. Then by De-Morgan’s law,

X = ∅c = (∩iFi)
c = ∪iF

c
i

As, all Fi is closed F c
i is open and therefore {F c

i } is an open cover of X.
Now, as X is compact, then there exists a finite sub-collection {F c

1 , F
c
2 , · · · , F c

n} of
{F c

i } which covers X. So,
F c
1 ∪ F c

2 ∪ · · · ∪ F c
n = X
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Again using De-Morgan’s law,

F1 ∩ F2 ∩ · · ·Fn = (F c
1 ∪ F c

2 ∪ · · · ∪ F c
n)

c

= Xc

= ∅

Which completes the proof.
Now, we will show that (ii) =⇒ (i)
Let the condition (ii) holds. We wish to show that X is compact. For that, Let A is
an open covering of X, we need to find a finite sub-collection of A which covers X.
As all the elements of A is open then complements of these sets is closed. Then we
find a collection {Ac

i} of closed sets in X such that

∪iAi = X =⇒ ∩iA
c
i = ∅ Using, De-Morgan’s law

Then using the given condition we find a finite sub-collection {Ac
1, A

c
2, · · · , Ac

n} such
that Ac

1 ∩ Ac
2 ∩ · · · ∩ Ac

n = ∅
Again, using De-Morgan’s law

A1 ∪ A2 ∪ · · ·An = (Ac
1 ∩ Ac

2 ∩ · · ·Ac
n)

c

= ∅c

= X

Then we find a finite subcollection {A1, A2, · · · , An} of A which covers X.
Hence, X is compact.

5. In the previous discussion it was shown that there is some relations of com-
pactness with the Hausdorff property. There was a lot of theory we discussed of
compactness where the Hausdorff property was satisfied. To find a relation among
them there should be an similarity of them. So the next theorem will provide that.
Theorem: Let f a one-one continuous function from a compact space X into a
Hausdorff space Y . Then X and f(X) are homeomorphic.

Proof: Given f : X → Y is a one-one continuous function. Let f : X → f(X)
be a restricted map of f . So, g is a one-one,onto and a continuous map.
Hence, g−1 exists. We have just one thing to prove and that is g−1 : f(X) → X is
continuous.
Let F is a closed subset of X, we whish to show that

(g−1)−1(F ) = g(F )

is closed in g(X).
As, F is a closed subspace of a compact space X, then F is compact.
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As g is continuous and F is compact in X, g(F ) is compact in f(X).
As, f(X) satisfies Hausdorff property and g(F ) is closed in f(X), g(F ) is closed in
f(X).
Hence, g−1 is a continuous mapping.

∴ g : X → f(X) is a homeomorphism

Hence,
X ≃ f(X)

6. Corollary: Let (X, T ) be a compact and let (X, T ′) be a Hausdorff space.
Then T ′ ⊆ T implies T ′ = T .

7. If E is compact and F is closed, then E ∩ F is compact.

The proof of this theorem is an obvious concept. We will understand this with help
of diagram.

Given E is compact and F is closed. Then E ∩ F is closed in E.
As, E is compact and E ∩ F is closed in E, therefore E ∩ F is compact in E, i.e,
E ∩ F is compact.

55



Applications of Compactness

Compactness is a key concept in topology and analysis, playing a vital role in various
branches of mathematics and its applications. Below is a detailed insight into the
applications of compactness:

1. Analysis

• Extreme Value Theorem: In real analysis, the Extreme Value Theorem states
that a continuous function on a compact set attains its maximum and minimum
values. This is fundamental in optimization problems and in ensuring the exis-
tence of extremal values.

• Uniform Continuity: Continuous functions on compact sets are uniformly
continuous. This property is crucial in approximation theory and in the study
of differential equations, where it guarantees that functions behave well across
the entire domain.

2. Topology

• Heine-Borel Theorem: In Rn, the Heine-Borel Theorem characterizes compact
sets as those that are closed and bounded. This theorem is fundamental in
understanding the structure of subsets in Euclidean space.

• Compactness in Metric Spaces: In metric spaces, compactness is used to
ensure that every sequence has a convergent subsequence (Bolzano-Weierstrass
property), which is important in convergence analysis and functional analysis.

3. Functional Analysis

• Banach-Alaoglu Theorem: In functional analysis, the Banach-Alaoglu Theo-
rem states that the closed unit ball in the dual space of a normed vector space is
compact in the weak* topology. This result is crucial in the study of dual spaces
and weak convergence.

• Riesz Representation Theorem: This theorem uses compactness to represent
continuous linear functionals on Hilbert spaces as inner products, facilitating the
analysis and solution of various problems in Hilbert spaces.

4. Measure Theory and Integration

• Compact Support: Functions with compact support (i.e., functions that are
zero outside a compact set) are important in measure theory and integration,
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particularly in defining and working with distributions and in the theory of
Sobolev spaces.

• Lebesgue Dominated Convergence Theorem: Compactness is used to en-
sure conditions for the Lebesgue Dominated Convergence Theorem, which allows
the interchange of limit and integral operations under certain conditions.

5. Differential Equations

• Existence of Solutions: Compactness is used in proving the existence of solu-
tions to differential equations, particularly through the Arzelà-Ascoli Theorem,
which provides criteria for precompactness of families of functions.

• Boundary Value Problems: In solving boundary value problems, compact-
ness arguments ensure that certain operators are well-behaved and that solutions
exist within a specified function space.

6. Dynamical Systems

• Invariant Sets: In the study of dynamical systems, compact invariant sets
ensure that trajectories do not escape to infinity and help in the analysis of
long-term behavior and stability of the system.

• Poincaré Recurrence Theorem: This theorem uses compactness to state that
certain systems will return arbitrarily close to their initial states after some time,
which is significant in the study of ergodic theory and statistical mechanics.

7. Algebraic Topology

• Homology and Cohomology: Compactness simplifies the computation of
homology and cohomology groups, which are used to classify topological spaces
and understand their properties.

• Compactly Generated Spaces: In algebraic topology, working with com-
pactly generated spaces helps in simplifying the theory and ensuring that certain
constructions and results are well-defined and manageable.

8. Mathematical Physics

• Quantum Mechanics: In quantum mechanics, the compactness of certain op-
erators (such as the Hamiltonian in a bounded potential) ensures the discreteness
of the spectrum, which corresponds to quantized energy levels.
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• Relativity: Compactness is used in general relativity to analyze the global
structure of spacetime, ensuring that certain properties hold over the entire
manifold.

9. Optimization and Numerical Analysis

• Optimization Problems: Compactness ensures that optimization problems
have solutions within a feasible region, as in the case of linear programming
problems where feasible regions are often compact polyhedra.

• Convergence of Algorithms: In numerical analysis, compactness is used to
prove the convergence of iterative algorithms, ensuring that sequences generated
by the algorithms have accumulation points that are potential solutions.

10. Economics and Game Theory

• Existence of Equilibria: Compactness is crucial in proving the existence of
equilibria in economic models and game theory, such as Nash equilibria, by
ensuring that certain sets are closed and bounded.

• Fixed Point Theorems: Many fixed point theorems, which are fundamental
in economics for proving the existence of solutions to equilibrium problems, rely
on compactness. For example, the Brouwer and Kakutani Fixed Point Theorems
require compactness assumptions.

Conclusion

Compactness is a powerful and versatile concept with widespread applications in
mathematics and science. It provides a framework for ensuring the existence and
properties of solutions in various problems, from analysis and topology to differential
equations and mathematical physics. Its role in guaranteeing the boundedness and
continuity of spaces makes it an indispensable tool in both theoretical and applied
mathematics.
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