GOUR MAHAVIDYALAYA, MANGALBARI, MALDA DEPARTMENT: BOTANY

LESSON PLAN FOR NEP MAJOR 2023-24 YEAR 1 SEMESTER I

PAPER	ΤΟΡΙΟ	SUB TOPIC	NUMBER	TEACHERS
			OF	NAME
			LECTURES	
	01	Commentation for the second	1.4	
BOT-DC-MJ-	Algae	General characteristic features.	1-4	D.5
101 : Diversity		range of thallus		
of		Ecological and economic importance		
0.		Leonogical and contonne importance.		
Cryptogams				
	Fungi	General characteristic features, cell structure,		
		fruiting bodies, similarities with plants and	5-8	S.S
		animals, ecological and economic importance.		
		General characteristic features, cell structure	0.10	DC
	Lichen	fruiting bodies, ecological and economic	9-10	P.5
		importance.		
	Dranahartaa			
	Bryophytes	General characteristic features, adaptation to	11_15	PD
		land habit, difference between liverworts and	11-13	F.D
		importance		
	Pteridonhyte			
	r tendopinyte	General characteristic features, differences	16-20	D.R
	5	economic importance.		

SEMESTER II						
PAPER	ΤΟΡΙϹ	SUB TOPIC	NUMBER OF LECTURES	TEACHER S NAME		
BOT-DC-MJ-201 : Diversity of Phanerogams	Gymnosperm	General characteristic features, difference between cycads and conifers, distribution in India, ecological and economic importance. (wood character with special reference to timber)	21-26	D.R		
	Angiosperm	General characteristic features, difference between dicots and monocots, plant forms- herbs, shrubs, trees & climbers, ecological and economic importance (with special reference to food crops).	27-32	S.S		
	Morphology of Angiosperm:	General structures, types and functions of- Leaf, Stem, Root, Flower and Fruits. Pollen grains with types (porate, colpate,colporate)	33-37	D.S		
	Plant Nomenclature	Brief idea of binomial nomenclature.	38-43	P.D		
	Contribution of Eminent Botanists	John Ray, Carl Linneaus, George Benthum & Joseph Dalton Hooker, Gregor Johann Mendel, Charles Darwin, James D. Watson & Francis Crick, N.I. Vavilov, Norman Borlaug, Jagadish Chandra Bose, Birbal Sahni, Panchanan Maheswari, M.S. Swaminathan, Arun Kumar Sharma.	44-50	P.S		

YEAR 2

SEMESTER III

PAPER	TOPIC	SUB TOPIC	NUMBER	TEACHER
			OF	S NAME
			LECTURES	
		[1] Conoral characters and classification by	E0 E4	
BOI-DC-MJ-301:	Gymnosperm	Stewart and Rothwell, 1993 (up to order)	50-54	P.D
Gymnosperm &				
Palaeobotany		[2] Ecological and economic importance of		
		Gymnosperms.	55-58	D.S
		[3] Vegetative morphology, anatomy and reproductive structures, development of gametophytes and embryogeny of <i>Cycas</i> sp., <i>Pinus</i> sp. and <i>Gnetum</i> sp.	59-68	S.S
		[4] Fossil gymnosperms: Structural features, geographical and geological distribution of reconstructed genera: <i>Lyginopteris</i> sp., <i>Williamsonia</i> sp. and <i>Cordaites</i> sp.	69-75	D.R
	Paleobotany	[5] Fossil: types and modes of preservation (Schopf, 1975), conditions of preservations, fossilization process.	76-80	S.S
		[6] Geological time scale and major events of plant life through geological ages.	81-86	D.R
		[7] Gondwana – an overview of Indian Gondwana flora.	87-95	P.D
		[8] Importance of study of fossil.	96-104	D.S

SEMESTER IV						
PAPER	ΤΟΡΙΟ	SUB TOPIC	NUMBER	TEACHER		
			OF	S NAME		
			LECTURES			
Major Course -6	Plant	[1] Introduction and scope of Plant	104-110	P.D		
(MC-6) : Plant	Anatomy	Anatomy: Applications in systematics,				
Anotoniu ond		10rensics and pharmacognosy.				
Anatomy and		Classification of tissues: Simple and complex	110-118	S.S		
Plant Ecology		tissues (no phylogeny); cytodifferentiation				
		oftracheary elements and sieve elements; Pits				
		and plasmodesmata; Wall ingrowths and				
		transfer cells, encrustation and incrustation,				
		Ergastic substances. Hydathodes, cavities,				
		lithocysts and laticifers.				
		[3] Apical meristems: Meristimatic and	119-128	D.R		
		(Tunica-corpus concept) and organization of				
		root apex (Korper-Kappe concepts): Structure				
		of dicot and monocot leaf, Kranz anatomy.				
		Structure of Xylem and Phloem tissue; Types				
		and evolution of stele; Vascular bundle -types				
		and function. Root-Stem transition and its				
		significance;				
		[4] Vascular Cambium and Wood: Basic				
		concepts of cambium; Secondary growth in	129-137	P.D		
		elements: Types of rays and axial parenchyma:				
		Cyclic aspects and reaction wood: Sapwood				
		and heartwood; Normal and Anomalous				
		secondary growth (citing examples of				
		Dracaenastem, Bignoniastem, Tinospora root,				
		Orchid root), different types of wood. Concept				
		and application of Dendrochronology.				
		[5] Adaptive and Protective Systems:				
		waves, trichomes (uni-and multicellular				
		glandular and no glandular, two examples of				
		each), stomata (classification); Development				
		and composition of periderm, rhytidome and	138-145	S.S		
		lenticels.Adcrustation and incrustation;				
		Anatomical adaptations of xerophytes and				
		hydrophytes.				
	Plant Ecology					
		[1] Introduction: Basic concepts; Levels of				
		living world and the environment	146-152	P.D		
		[2] Soil and Water: Importance: Origin				
		Formation; Composition; Physical: Chemical				
		and Biological components; Precipitation types				

	1			1
		(rain, fog, snow, hail, dew); Hydrological Cycle; Water in soil (concept only); Water table.	153-165	S.S
		[3] Light, temperature, wind and fire: Variations; adaptations of plants to their	166-170	D.R
		 Variation. [4] Biotic interactions: Trophic organization, basic source of energy, autotrophy, heterotrophy; symbiosis, commensalism, parasitism; food chains and webs; biomass, 	171-178	P.S
		 standing crop. [5] Population ecology: Characteristics and Dynamics, Ecological Speciation 	179-185	D.S
		[6] Plant communities: Habitat and niche; Characters: analytical and synthetic; Ecotone and edge effect; Dynamics: succession – processes, types; climax concepts.	186-192	P.S
		 [7] Ecosystems: Structure; Processes; Food chains and Food webs; Ecological pyramids. [8] Functional aspects of ecosystem: Principles and models of energy flow; 	193-199	D.R
		Production and productivity; Ecological efficiencies; Biogeochemical cycles; Cycling of Carbon, Nitrogen and Phosphorus.	200-212	S.S
Major Course -7 (MC-7) : Plant Physiology	Plant Physiology	[1] Plant-water relations: Water Potential and its components, water absorption by roots, aquaporin, pathway of water movement, symplast, apoplast, trans membrane pathways, root pressure, guttation. Ascent of sap– cohesion-tension theory. Transpiration and factors affecting transpiration, antitranspirants, mechanism of stomatal movement. Cavitation and ambolism.	213-220	D.S
		 [2] Mineral nutrition: Essential and beneficial elements, macro and micronutrients. [3] Nutrient Uptake: Transport of ions across cell membrane, passive absorption 	221-229	D.S
		electrochemical gradient, facilitated diffusion, active absorption. Proton ATPase pump and ion flux, uniport, co-transport, symport,	230-238	D.R
		antiport. [4] Carbon assimilation : photosynthetic pigmentsandtheirrole (chlorophylls and accessory pigments), antenna molecules and reaction centres, photochemical reactions, photosynthetic electron transport, PSI, PSII.	239-245	S.S
		CO ₂ reduction, photorespiration, C4 pathways; CAM and its ecological significance. Factors affecting CO ₂ reduction.		

[5] Carbon Oxidation: Glycolysis and its	246-255	D.S
significance, fate of pyruvate, oxidative		
pentose phosphate pathway,TCA cycle,		
mitochondrial electron transport, oxidative		
phosphorylation, factors affecting respiration.		
[6] Translocation in the phloem: Phloem		
loading and unloading; Source-sink	256-260	D.S
relationship.		
[7] Transpiration: Stomata – Transpiration		
role and significance. Role of CO ₂ , K+ - ion,	264 267	D.C
blue light & abscisic acid in stomata	261-267	D.S
movement; Anti-transparent.		
[8] Plant growth regulators: Introduction to		
Plant growth hormones/regulators. Types of	268-277	РD
plant growth regulators. Physiological roles of	200 277	1.0
Auxin, Gibberellins, Cytokinin, Abscisic acid,		
Ethylene, Brassinosteroids and Jasmonic acid.		
Commercial Plant Growth Hormones examples		
and uses.		
[9] Physiology of flowering: Photoperiodism,	278-285	S.S
flowering stimulus, foreign concept,		
vernalization.		
[10] Photochromic, cytochromes and		
phototropism: Discovery, chemical nature,	286-292	D.S
role in photo morphogenesis, low energy		
responses (LER) and high irradiance responses		
(HIR)		
[11] Seed Dormancy: Types, causes and	293-300	D.S
methods of breaking seed dormancy.		

YEAR 3

SEMESTER V

PAPER	ΤΟΡΙΟ	SUB TOPIC	NUMBER	TEACHER
			OF	S NAME
			LECTURES	
BOT-DC-MJ-	Bryophytes	[1] Introduction / Evolutionary emergence of	301-310	S.S
501:Evolution of	and Ptoridophytos	land plants: Evolution from thallophyta to		
Early Land Plants	1 ternuophytes	 aquatic habit to land habit, Evolution and complexity of sporophyte (telome theory); Alternation of generations. [2] Bryophytes: General characteristics; 		
		Adaptations to land habit; Classification (Proskauer, 1957) up to class. Range of thallus organization. Ecological and economic importance of bryophytes with special reference to <i>Sphagnum</i> sp. [3] Type Studies- Bryophytes: Morphology,	311-324	PD
		anatomy and reproduction and sporophyte development and alternation of generation of <i>Marchantia</i> sp, <i>Porella</i> sp., <i>Anthoceros</i> sp., <i>Sphagnum</i> sp. <i>Funaria</i> sp. <i>and Pogonatum</i> sp. (Developmental details not to be included). [4] Pteridophytes: General characteristics; Classification up to class (Sporne, 1975); Concept of heterospory and origin of seed	325-333	D.R
		habit; Apogamy, and apospory; Stelar evolution. Ecological and economic importance of pteridophytes. Early land plants <i>Rhynia</i> sp .and <i>Lepidodendron</i> sp. (Reconstructed).	334-346	S.S
		[5] Type Studies- Pteridophytes: Morphology, anatomy and reproduction of <i>Psilotum</i> , <i>Lycopodium</i> sp., <i>Selaginella</i> sp., <i>Equisetum</i> sp. <i>Polypodium</i> sp., <i>Pteris</i> sp. and <i>Marsilea</i> sp. fossilization process.	347-352	S.S
BOT-DC-MJ-502: Morphology and Taxonomy of Angiosperms	Plant Morphology	Introduction to angiospermic morphology, Palynology and Anatomy, scope and applications in systematics, forensic and pharmacognosy. Leaf: Types, Margin, Base, Venation and Phyllotaxy, Petiole and modifications. Inflorescence: types with examples; Flower: Floral parts, Thalamus and insertion of floral parts, Calyx, Corolla, Aestivation, Perianth, floral diagram and floral formula. Stamen: Types and anther shape. Carpel :	353-370	D.S

	types;		
	Fruit types with examples.		
	Significance of Plant systematics: Introduction		
	to systematics: Plant identification		
Plant	Classification. Nomenclature. Field inventory:		
I lant	Functions of Herbarium; Important herbaria	371-393	P.S
Systematics	and botanical gardens of the world and India;		
	Virtual herbarium; E-flora; Documentation:		
	Flora, Monographs, Journals; Keys.		
	Taxonomic hierarchy: Concept of taxa (family,		
	genus, species); Categories and taxonomic		
	hierarchy; Species concept (taxonomic,		
	biological, evolutionary).		
	(ICN): Panks and names: Turification author		
	(ICIN), Kanks and names, Typincation, author citation, valid publication, rejection of names		
	principle of priority and its limitations. Names		
	of hybrids		
	Systems of classification: Major contributions		
	of Theophrastus, Bauhin, Tournefort,		
	Linnaeus, Adanson, de Candolle, Bessey,		
	Hutchinson, Takhtajan and Cronquist; Outline		
	of classification systems of Linnaeus (1753),		
	Bentham and Hooker (1862-1883) upto series		
	and brief reference of Angiosperm Phylogeny		
	Biometrics, numerical taxonomy and		
	cladistics: Characters: Variations: OTUs.		
	character weighting and coding.		
	Phylogeny of Angiosperms: Terms and		
	concepts (primitive and advanced, homology		
	and analogy, parallelism and convergence,		
	monophyly, Paraphyly, polyphyly and clades).		
	Origin and evolution of angiosperms; Co-		
	evolution of angiosperms and animals;		
	Methods of illustrating evolutionary		
	Diagnostic features of Families: Di -		
	cotyledons- Ranunculaceae. Brassicaceae.		
	Malvaceae, Leguminosae (sensu lato),		
	Apocynaceae, Solanaceae, Lamiaceae,		
	Cucurbitaceae, Rubiaceae, Euphorbiaceae,		
	Asteraceae. Monocotyledons-Alismataceae,		
	Poaceae, Zingiberaceae and Orchidaceae.		
	The cell: Cell as a unit of structure and		

BOT-DC-MJ-503:	Cell biology	function, Characteristics of prokaryotic and	394-412	S.S
Cell Biology and		eukaryotic cells; Origin of eukaryotic cell (End		
Plant Breeding		Cell wall and membrane: Plant cell wall.		
Plant Breeding		 plasma membrane, models of membrane structure (fluid mosaic model), endocytosis and exocytosis. Cell organelles (structure and function): Nucleus, chloroplast, mitochondria, Endomembrane system, peroxisome, Lysosome. Cytoskeleton: microtubules, microfilaments and intermediary filament. Cell division: Phases of eukarvotic cell cycle 		
		cell division: Phases of eukaryotic cell cycle, mitosis and meiosis; Regulation of cell cycle- checkpoints, role of protein kinases.		
	Plant Breeding	Basic concept of plant breeding, significance and role in crop improvement. Green Revolution (History, Basic concepts and significance).	413-425	D.R
		Selection methods in plant breeding: Mass Selection, Pure-line Selection, Pedigree Selection, Bulk Selection and hybridization. Outline idea about Male sterility, Heterocyst, Hybrid Vigour. Seed bank, Gene Bank, Germplasm- Importance and role in plant breeding.		
BOT-DC-MJ-504 : Palynology and Reproductive Biology of Angiosperms	Palynology	 [1] Palynology and scope: a brief account [2] Pollen morphology: Pollen morphology, units, polarity, symmetry, shape, size, aperture; NPC system for numerical expression of aperture details; evolution of aperture types. [3] Pollen Viability and Storage: Pollen Viability and Storage: Estimation; variations; responsible factors; short- and long-term storage; significance. [4] Branches of Palynology & Application: Branches of palynology in taxonomic & phylogenetic deductions; palynology in academic & applied aspects including melissopalynology, entomopalynology, forensic palynology. 	426-434	D.S
		flowering; flower as a modified determinate		

	Reproductive	shoot. Flower development: genetic and	435-447	S.S
-	Biology of	molecular aspects.		
.	Angiosperms	[2] Anther and pollen biology: Anther wall:		
		Structure and functions, microsporogenesis,		
		callose deposition and its significance. micro		
		gametogenesis, male germ unit		
		[3] Ovule: Structure; Types; Special structures-		
		endothelium, obturator, aril, caruncle and		
		hypostase; Female gametophyte–		
		megasporogenesis (monosporic, bisporic,		
		tetrasporic) and mega gametogenesis (details of		
		Polygonum type); Organization and		
		ultrastructure of mature embryo sac.		
		[4] Pollination and fertilization: Pollination		
		types, agents and adaptations; pollen		
		germination; path of pollen tube in pistil; double		
		fertilization.		
		[5] Embryo, Endosperm and Seed: Structure		
		and types; General pattern of development of		
		dicot and monocot embryo and endosperm;		
		Suspensor: structure and functions; Embryo-		
		endosperm relationship; Nutrition of embryo;		
		Unusual features; Embryo development in		
		Paeonia. Seed structure.		