GOUR MAHAVIDYALAYA, MANGALBARI, MALDA DEPARTMENT: BOTANY

LESSON PLAN FOR NEP MAJOR 2024-25 YEAR 1 SEMESTER I

SEIVIESTER I					
PAPER	ΤΟΡΙϹ	SUB TOPIC	NUMBER OF LECTURES	TEACHERS NAME	
BOT-DC-MJ- 101 : Diversity of Cryptogams	Algae	General characteristic features. cell structures, range of thallus, Ecological and economic importance.	1-4	D.S	
	Fungi	General characteristic features, cell structure, fruiting bodies, similarities with plants and animals, ecological and economic importance.	5-8	S.S	
	Lichen	General characteristic features, cell structure, fruiting bodies, ecological and economic importance.	9-10	P.S	
	Bryophytes	General characteristic features, adaptation to land habit, difference between liverworts and hornworts, ecological and economic importance.	11-15	P.D	
	Pteridophyte s	General characteristic features, differences among fern and non-fern plants, ecological and economic importance.	16-20	D.R	

SEMESTER II				
PAPER	ΤΟΡΙϹ	SUB TOPIC	NUMBER OF LECTURES	TEACHER S NAME
BOT-DC-MJ-201 : Diversity of Phanerogams	Gymnosperm	General characteristic features, difference between cycads and conifers, distribution in India, ecological and economic importance. (wood character with special reference to timber)	21-26	D.R
	Angiosperm	General characteristic features, difference between dicots and monocots, plant forms- herbs, shrubs, trees & climbers, ecological and economic importance (with special reference to food crops).	27-32	S.S
	Morphology of Angiosperm:	General structures, types and functions of- Leaf, Stem, Root, Flower and Fruits. Pollen grains with types (porate, colpate, colporate)	33-37	D.S
	Plant Nomenclature	Brief idea of binomial nomenclature.	38-43	P.D
	Contribution of Eminent Botanists	John Ray, Carl Linneaus, George Benthum & Joseph Dalton Hooker, Gregor Johann Mendel, Charles Darwin, James D. Watson & Francis Crick, N.I. Vavilov, Norman Borlaug, Jagadish Chandra Bose, Birbal Sahni, Panchanan Maheswari, M.S. Swaminathan, Arun Kumar Sharma.	44-50	P.S

YEAR 2

SEMESTER III

PAPER	ΤΟΡΙϹ	SUB TOPIC	NUMBER OF	TEACHER S NAME
			LECTURES	
BOT-DC-MJ-301 : Gymnosperm &	Gymnosperm	[1] General characters and classification by Stewart and Rothwell, 1993 (up to order)	50-54	P.D
Palaeobotany		[2] Ecological and economic importance of Gymnosperms.	55-58	D.S
		[3] Vegetative morphology, anatomy and reproductive structures, development of gametophytes and embryogeny of <i>Cycas</i> sp., <i>Pinus</i> sp. and <i>Gnetum</i> sp.	59-68	S.S
		[4] Fossil gymnosperms: Structural features, geographical and geological distribution of reconstructed genera: <i>Lyginopteris</i> sp., <i>Williamsonia</i> sp. and <i>Cordaites</i> sp.	69-75	D.R
	Paleobotany	[5] Fossil: types and modes of preservation (Schopf, 1975), conditions of preservations, fossilization process.	76-80	S.S
		[6] Geological time scale and major events of plant life through geological ages.	81-86	D.R
		[7] Gondwana – an overview of Indian Gondwana flora.	87-95	P.D
		[8] Importance of study of fossil.	96-104	D.S

SEMESTER IV PAPER TOPIC SUB TOPIC NUMBER T				
			OF LECTURES	S NAME
Major Course -6 (MC-6) : Plant	Plant Anatomy	[1] Introduction and scope of Plant Anatomy: Applications in systematics, forensics and pharmacognosy.	104-110	P.D
Anatomy and Plant Ecology		[2] Structure and Tissues system: Classification of tissues; Simple and complex tissues (no phylogeny); cytodifferentiation oftracheary elements and sieve elements; Pits and plasmodesmata; Wall ingrowths and transfer cells, encrustation and incrustation, Ergastic substances. Hydathodes, cavities, lithocysts andlaticifers.	110-118	S.S
		[3] Apical meristems: Meristimatic and permanent tissues: Organization of shoot apex (Tunica-corpus concept) and organization of root apex (Korper-Kappe concepts); Structure of dicot and monocot leaf, Kranz anatomy. Structure of Xylem and Phloem tissue; Types and evolution of stele; Vascular bundle -types and function. Root-Stem transition and its significance;	119-128	D.R
		[4] Vascular Cambium and Wood: Basic concepts of cambium; Secondary growth in root and stem. Axially and radially oriented elements; Types of rays and axial parenchyma; Cyclic aspects and reaction wood; Sapwood and heartwood; Normal and Anomalous secondary growth (citing examples of <i>Dracaena</i> stem, <i>Bignonia</i> stem, <i>Tinospora</i> root, Orchid root), different types of wood. Concept and application of Dendrochronology.	129-137	P.D
		[5] Adaptive and Protective Systems: Epidermal tissue system, cuticle, epicuticular waxes, trichomes (uni-and multicellular, glandular and no glandular, two examples of each), stomata (classification); Development and composition of periderm, rhytidome and lenticels.Adcrustation and incrustation; Anatomical adaptations of xerophytes and hydrophytes.	138-145	S.S
	Plant Ecology	 Introduction: Basic concepts; Levels of organization. Inter-relationships between the living world and the environment. Soil and Water: Importance; Origin, Formation; Composition; Physical; Chemical and Biological components; Precipitation types 	146-152	P.D

		(rain, fog, snow, hail, dew); Hydrological Cycle; Water in soil (concept only); Water	153-165	S.S
		table.		
		[3] Light, temperature, wind and fire: Variations; adaptations of plants to their variation.	166-170	D.R
		[4] Biotic interactions: Trophic organization, basic source of energy, autotrophy, heterotrophy; symbiosis, commensalism, parasitism; food chains and webs; biomass,	171-178	P.S
		 standing crop. [5] Population ecology: Characteristics and Dynamics, Ecological Speciation [6] Plant communities: Habitat and niche; 	179-185	D.S
		Characters: analytical and synthetic; Ecotone and edge effect; Dynamics: succession – processes, types; climax concepts.	186-192	P.S
		 [7] Ecosystems: Structure; Processes; Food chains and Food webs; Ecological pyramids. [8] Functional aspects of ecosystem: Principles and models of energy flow; 	193-199	D.R
		Production and productivity; Ecological efficiencies; Biogeochemical cycles; Cycling of Carbon, Nitrogen and Phosphorus.	200-212	S.S
Major Course -7 (MC-7) : Plant Physiology	Plant Physiology	[1] Plant-water relations: Water Potential and its components, water absorption by roots, aquaporin, pathway of water movement, symplast, apoplast, trans membrane pathways, root pressure, guttation. Ascent of sap– cohesion-tension theory. Transpiration and factors affecting transpiration, antitranspirants, mechanism of stomatal movement. Cavitation and ambolism.	213-220	D.S
		 [2] Mineral nutrition: Essential and beneficial elements, macro and micronutrients. [3] Nutrient Uptake: Transport of ions across cell membrane, passive absorption, 	221-229	D.S
		electrochemical gradient, facilitated diffusion, active absorption. Proton ATPase pump and ion flux, uniport, co-transport, symport, antiport.	230-238	D.R
		[4] Carbon assimilation : photosynthetic pigmentsandtheirrole (chlorophylls and accessory pigments), antenna molecules and reaction centres, photochemical reactions, photosynthetic electron transport, PSI, PSII, CO ₂ reduction, photorespiration, C4 pathways; CAM and its ecological significance. Factors affecting CO ₂ reduction.	239-245	S.S

[5] Carbon Oxidation: Glycolysis and its	246-255	D.S
significance, fate of pyruvate, oxidative	-	
pentose phosphate pathway, TCA cycle,		
mitochondrial electron transport, oxidative		
phosphorylation, factors affecting respiration.		
[6] Translocation in the phloem: Phloem		
loading and unloading; Source-sink	256-260	D.S
relationship.		
[7] Transpiration: Stomata – Transpiration		
role and significance. Role of CO ₂ , K+ - ion,	264 267	5.6
blue light & abscisic acid in stomata	261-267	D.S
movement; Anti-transparent.		
[8] Plant growth regulators: Introduction to		
Plant growth hormones/regulators. Types of	268-277	P.D
plant growth regulators. Physiological roles of	200 277	1.0
Auxin, Gibberellins, Cytokinin, Abscisic acid,		
Ethylene, Brassinosteroids and Jasmonic acid.		
Commercial Plant Growth Hormones examples		
and uses.		
[9] Physiology of flowering: Photoperiodism,	278-285	S.S
flowering stimulus, foreign concept,		
vernalization.		
[10] Photochromic, cytochromes and		
phototropism: Discovery, chemical nature,	286-292	D.S
role in photo morphogenesis, low energy		
responses (LER) and high irradiance responses		
(HIR)	202.200	
[11] Seed Dormancy: Types, causes and	293-300	D.S
methods of breaking seed dormancy.		

YEAR 3

SEMESTER V

		SEMIESTER V	•••••	
PAPER	ΤΟΡΙϹ	SUB TOPIC	NUMBER OF LECTURES	TEACHER S NAME
BOT-DC-MJ- 501:Evolution of Early Land Plants	Bryophytes and Pteridophytes	 [1] Introduction / Evolutionary emergence of land plants: Evolution from thallophyta to early land plants and gradual progression from aquatic habit to land habit, Evolution and complexity of sporophyte (telome theory); Alternation of generations. [2] Bryophytes: General characteristics; Adaptations to land habit; Classification 	301-310 311-324	S.S PD
		 (Proskauer, 1957) up to class. Range of thallus organization. Ecological and economic importance of bryophytes with special reference to <i>Sphagnum</i> sp. [3] Type Studies- Bryophytes: Morphology, anatomy and reproduction and sporophyte 		
		 development and alternation of generation of <i>Marchantia</i> sp, <i>Porella</i> sp., <i>Anthoceros</i> sp., <i>Sphagnum</i> sp. <i>Funaria</i> sp. <i>and Pogonatum</i> sp. (Developmental details not to be included). [4] Pteridophytes: General characteristics; Classification up to class (Sporne, 1975); Concept of heterospory and origin of seed 	325-333	D.R
		habit; Apogamy, and apospory; Stelar evolution. Ecological and economic importance of pteridophytes. Early land plants <i>Rhynia</i> sp .and <i>Lepidodendron</i> sp. (Reconstructed).	334-346	S.S
		[5] Type Studies- Pteridophytes: Morphology, anatomy and reproduction of <i>Psilotum</i> , <i>Lycopodium</i> sp., <i>Selaginella</i> sp., <i>Equisetum</i> sp. <i>Polypodium</i> sp., <i>Pteris</i> sp. and <i>Marsilea</i> sp. fossilization process.	347-352	S.S
BOT-DC-MJ-502: Morphology and Taxonomy of Angiosperms	Plant Morphology	Introduction to angiospermic morphology, Palynology and Anatomy, scope and applications in systematics, forensic and pharmacognosy. Leaf: Types, Margin, Base, Venation and Phyllotaxy, Petiole and modifications. Inflorescence: types with examples; Flower: Floral parts, Thalamus and insertion of floral parts, Calyx, Corolla, Aestivation, Perianth, floral diagram and floral formula. Stamen: Types and anther shape. Carpel : types, placentation-types, ovule structure and	353-370	D.S

		types;		
		Fruit types with examples.		
		Significance of Plant avatamaticas Introduction		
		Significance of Plant systematics: Introduction		
		to systematics; Plant identification,		
Plar	nt	Classification, Nomenclature. Field inventory;	371-393	P.S
Syst	tematics	Functions of Herbarium; Important herbaria	571-555	1.5
		and botanical gardens of the world and India;		
		Virtual herbarium; E-flora; Documentation:		
		Flora, Monographs, Journals; Keys.		
		Taxonomic hierarchy: Concept of taxa (family,		
		genus, species); Categories and taxonomic		
		hierarchy; Species concept (taxonomic,		
		biological, evolutionary).		
		Botanical nomenclature: Principles and rules		
		(ICN); Ranks and names; Typification, author		
		citation, valid publication, rejection of names,		
		principle of priority and its limitations; Names		
		of hybrids		
		Systems of classification: Major contributions		
		of Theophrastus, Bauhin, Tournefort,		
		Linnaeus, Adanson, de Candolle, Bessey,		
		Hutchinson, Takhtajan and Cronquist; Outline		
		of classification systems of Linnaeus (1753),		
		Bentham and Hooker (1862-1883) upto series		
		and brief reference of Angiosperm Phylogeny		
		Group (APG III) classification.		
		Biometrics, numerical taxonomy and		
		cladistics: Characters; Variations; OTUs,		
		character weighting and coding. Phylogeny of Angiosperms: Terms and		
		concepts (primitive and advanced, homology		
		and analogy, parallelism and convergence,		
		monophyly, Paraphyly, polyphyly and clades).		
		Origin and evolution of angiosperms; Co-		
		evolution of angiosperms and animals;		
		Methods of illustrating evolutionary		
		relationship (phylogenetic tree, cladogram).		
		Diagnostic features of Families: Di -		
		cotyledons- Ranunculaceae, Brassicaceae,		
		Malvaceae, Leguminosae (sensu lato),		
		Apocynaceae, Solanaceae, Lamiaceae,		
		Cucurbitaceae, Rubiaceae, Euphorbiaceae,		
		Asteraceae. Monocotyledons-Alismataceae,		
		Poaceae, Zingiberaceae and Orchidaceae.		
		The cell: Cell as a unit of structure and		

BOT-DC-MJ-503:	Cell biology	function, Characteristics of prokaryotic and	394-412	S.S
	Cell blology	eukaryotic cells; Origin of eukaryotic cell (End	554-412	5.5
Cell Biology and		symbiotic theory).		
Plant Breeding		Cell wall and membrane: Plant cell wall,		
		plasma membrane, models of membrane		
		structure (fluid mosaic model), endocytosis		
		and exocytosis.		
		Cell organelles (structure and function):		
		Nucleus, chloroplast, mitochondria,		
		Endomembrane system, peroxisome,		
		Lysosome.		
		Cytoskeleton: microtubules, microfilaments and intermediary filament.		
		Cell division: Phases of eukaryotic cell cycle,		
		mitosis and meiosis; Regulation of cell cycle-		
		checkpoints, role of protein kinases.		
	Plant	Basic concept of plant breeding, significance and role in crop improvement.	413-425	D.R
	Breeding	Green Revolution (History, Basic concepts and		
		significance).		
		Selection methods in plant breeding: Mass		
		Selection, Pure-line Selection, Pedigree		
		Selection, Bulk Selection and hybridization.		
		Outline idea about Male sterility, Heterocyst,		
		Hybrid Vigour.		
		Seed bank, Gene Bank, Germplasm-		
		Importance and role in plant breeding.		
		[1] Palynology and scope: a brief account		
		[2] Pollen morphology: Pollen morphology,		
BOT-DC-MJ-504 :	Palynology	units, polarity, symmetry, shape, size, aperture;	426-434	D.S
Palynology and		NPC system for numerical expression of aperture		
Reproductive		details; evolution of aperture types.		
_		[3] Pollen Viability and Storage: Pollen		
Biology of		Viability and Storage: Estimation; variations; responsible factors; short- and long-term storage;		
Angiosperms		significance.		
		[4] Branches of Palynology & Application:		
		Branches of palynology & application: Branches		
		of palynology; palynology in taxonomic &		
		phylogenetic deductions; palynology in academic		
		& applied aspects including melissopalynology,		
		medical palynology, forensic palynology, entomopalynology&copropalynology.		
		entomoparynology@coproparynology.		
		[1] Reproductive development: Induction of		
		flowering; flower as a modified determinate		
L	1			

Reproductive Biology of Angiosperms	 shoot. Flower development: genetic and molecular aspects. [2] Anther and pollen biology: Anther wall: Structure and functions, microsporogenesis, callose deposition and its significance. micro gametogenesis, male germ unit [3] Ovule: Structure; Types; Special structures– endothelium, obturator, aril, caruncle and hypostase; Female gametophyte– megasporogenesis (monosporic, bisporic, tetrasporic) and mega gametogenesis (details of <i>Polygonum</i> type); Organization and ultrastructure of mature embryo sac. [4] Pollination and fertilization: Pollination 	435-447	S.S
	 types, agents and adaptations; pollen germination; path of pollen tube in pistil; double fertilization. [5] Embryo, Endosperm and Seed: Structure and types; General pattern of development of dicot and monocot embryo and endosperm; Suspensor: structure and functions; Embryo- endosperm relationship; Nutrition of embryo; Unusual features; Embryo development in <i>Paeonia</i>. Seed structure. 		