

STUDY MATERIAL ON

GRAPH THEORY

2023

PREPARED BY

DR. RAKESH SARKAR

ASSISTANT PROFESSOR

DEPARTMENT OF MATHEMATICS

GOUR MAHAVIDYALYA

MANGALBARI, MALDA

1 Graph Theory

1.1 Introduction

The first occurrence of graph in the Mathematical history is considered to be
the classical “Konigsberg Bridge Problem”. The problem is stated by the great
mathematician L. Euler who lived in Konigsberg, as below:

“Konigsberg is divided into four parts by river Pregel and connected by seven
bridges. Is it possible to tour Konigsberg along a path that crosses every bridge
once and only once and return to the starting point?”

The diagram is given as below:

Fig:1.1

In proving the fact that the problem is unsolvable, Euler represented above
image in the form of a “graph”, as follows.

Fig:1.2

The points denote the land and the lines denote bridges.
In fact, rather than only proving that above problem is unsolvable, Euler

introduced type of graphs, which can be traceable by starting from one point,
traversing every line once and returning to the starting point, which is termed
as Euler Graph. In Chapter 4, we shall discuss Euler Graphs in detail.

In modern times, Graph theory is applicable in many areas,such as, Chem-
istry, Electronics, and Networks, to name a few.

In this chapter, we will get acquainted ourselves with terminology and basic
concepts of Graph Theory

1

1.2 APPLICATIONS OF GRAPH THEORY

Though graph “theory” appears to be a theoretical and hence pure mathe-
matical term, we shall be amazed to know the areas in which it can be applied.
In this section, we shall just quote a few in which graph theory is applied.

1.Graph Theory is helpful in making robots function autonomously.

2.Graph Theory is used to solve actual crimes.

3.Mathematics,often called the universal language,also forms a ridge between
languages.Machine translators use Graph Theory to achieve good translations
efficiently.

4. Descriptions of cellular activity involve a combination of continuous mod-
els.The analysis of cells requires usage of Graph Theory as well.

5. Researchers use graph theory to find near- optimal solutions saving indus-
try time and money. (Travelling salesman’s problem, Chinese postman’s prob-
lem).

6. The Graph Theory is applicable in Road and Rail Traffic network.

7. The Graph Theory is applicable in planning tournaments (such as foot-
ball,chess).

8.Hierarchy in the office,such as Chairperson is the root and people work
under him are at various level.

9. The Graph Theory is present in the virtual world of internet such www
(world wide web), social networking, searching data, datamining, and so on.

2

1.3 BASIC GRAPH THEORY DEFINITIONS AND NO-
TATIONS

Simple Graph: Simple graph is a set G (V(G), E(G)),V(G) the set of vertices
(points) and E(G) the set of edges (lines) disjoint from V(G), together with an
incidence function G, that associates with each edge of G a distinct unordered
pair of vertices of G.

Directed Graph: A directed graph or digraph is a graph G (V, E) in which
edges are ordered pairs (u,v) where u,v ∈V That is if there is an edge from u
to v, there may or may not be an edge from v to u.

1.3.1 Example 1:

Fig:1.3

1.3.2 Example 2:

Fig:1.4

In the Example 1 graph G has, V ={u,v,w, x, y} and
E= {

e1, e2, e3, e4, e5, e6, e7, e8

}
In the Example 2, graph G has, V ={u,v,w, x, y}and E ={uv,uw,vw, xy}.
Note: 1. Typically number of vertices in a graph G is denoted by letter p

and edges by q.
2. A graph in which both vertex set and edge set is finite is called as finite

graph.

3

3. In this and the subsequent chapters, we shall mainly discuss finite graphs.
4. The graph with no vertices (and hence no edges) is termed as null graph.
5. A graph with just one vertex is termed as trivial graph.
6. We are discussing non-trivial and non-null graph.
7. In a graph, if an edge with identical end vertexis called as loop.
8. In a graph, two or more edges with same end vertices are termed as

parallel edges.
9. A graph, in which loop and / or parallel edges are permitted, is termed

as Multigraph.
10. Graph of Fig. 1.6 is a digraph or directed graph.
In the graph of Fig. 1.2, that is the graph of Konigsberg’s bridge problem,

we can observe parallel edges and the graph of Fig. 1.5, there is a loop at vertex
u.

Fig:1.5

Fig:1.6

Degree: The degree of a vertex of a graph is the number of edges incident
to the vertex, with loops counted twice. We denote degree of vertex v in a graph
G is denoted by deg G (v).

In Fig.1.3, degree of u is 3, where as in Fig.1.5, degree of u is 4.
Note: In case of directed graph, every vertex has two types of degrees,

in-degree (that is number of edges entering the vertex) and out-degree (that is
number of edges leaving the vertex). For the graph of Fig. 1.6, in-deg (a) =

4

out-deg (a) = 1; in-deg (b) = 1, out-deg (b) = 2; in-deg (c) = 3, out-deg (c) =
1; in-deg (d) = 1, out-deg (d) = 2; in-deg (e) = outdeg (e) = 1; indeg (f) = 0,
out-deg (f) = 2.

Walk: A walk consists of an alternating sequence of vertices and edges
consecutive elements of which are incident, which begins and ends with a vertex.

In Fig. 1.3, {ue1ve7ye7ve2w}is a walk.
Trail: A trail is a walk in which no edges are repeated.
In Fig. 1.3

ue1ve2we6ue5y

is a trail.
Path: A path is a trail in which no vertices (except possibly the end vertices)

are repeated.
In Fig 1.3,

ue1ve7ye8we3x

is a path
Circuit: A circuit is a closed trail (that is end vertices are same) with at

least one edge is known as Circuit. In Fig. 1.3,

ue1ve7ye8we3xe4ye5u

is a circuit. It can also be written, only in terms of vertices as: uvywxyu.
Cycle: A cycle is a circuit in which no edge is repeated.
In Fig. 1.3,

ue1ve2we3xe4ye5u

is a cycle.
It can also be written as uvwxyu, in terms of vertices alone.
Subgraph: A graph H = (H (V), H(E)) is called as subgraph of G =

(G(V), G(E)), ifH(V) ⊆ G(V) and H(E) ⊆ G(E)
Fig. 1.6 below is a subgraph of Fig. 1.3

Fig:1.7

Let G (V, E) be a graph. We can obtain a subgraph from a graph in any
one of the following ways.

1. A subgraph H, can be obtained by deleting vertex subset U of V and by
deleting all the edges from E which are incident with a vertex in U.

5

2. A subgraph H, can be obtained by deleting an edge set D that is subset
of E and vertex set of H is same as vertex set of G. Such a subgraph is called
as spanning subgraph of G.

Connected Graph: Graph G is connected if and only if there exists a walk
between any pair of vertices.

Graph in Fig. 1.3 is connected.
Disconnected Graph: Graph G is disconnected if and only if there exists

at least one pair of vertices which is not connected by a walk.
Graph if Fig. 1.4 is disconnected, as there is no walk between vertices u and

x.
The distance d(u, v) between two vertices u and v of a graph G is the length

of the shortest path (often termed as geodesic) joining them if any; otherwise
d(u, v) = ∞

In a simple connected graph, distance is a metric; that is for all vertices u,
v, and w,

1. d(u, v) ≥ 0andd(u, v) = 0ifandonlyifu = v.
2. d(u,v) = d(v, u)
3. d(u, v) + d(v, w) ≥ d(u,w)
The diameter d (G) of a connected graph G is the length of any longest

geodesic. In the graph of Fig. 1.3, d (G) is 2.]
Complement of a Graph: Let G be a simple graph. The complement G

of G is the simple graph whose vertex set is V (that is same the vertex set of
G) and whose edges are the pairs of nonadjacent vertices of G.

Fig. 1.8 below is the complement of the graph of Fig. 1.3

Fig:1.8

Components: Connected component or Component of a graph is a sub-
graph in which any two vertices are connected to each other by paths, and which
is connected to no additional vertices in the supergraph.

For example graph of Fig. 1.9 below is made up of three components.

Proof: Let G (V, E) be a disconnected and non-trivial graph and

GC

6

be its complement. Let u, v be any two vertices in V. If there is no edge uv in
G, then uv will be an edge in GC. If the edge uv exists in G, then vertices u
and v belong to same component (say H) of G. As G is disconnected it has at
least two components. Let w be a vertex in V which belongs to a component
other than H. Then, there are no edges uw and wv in G. Hence, uw and wv be
edges in

GC

, and hence we get a u-v path (u-w-v) in

GC

. Thus, any between two arbitrary vertices u, v of V there is a path in GC.
Hence, GC is connected. Note: The converse of the above result is not true.
That is complement of a connected graph need not be connected. As an example
consider the graphs in the Fig.1.10 below.

Fig:1.09

1.4 DIFFERENT TYPES OF GRAPHS

In this section we shall define and draw different types of graphs which will be
useful for us in further discussion. Complete Graph: A graph G is said to be
complete, if every vertex of G is connected to every other vertex in the vertex
set of G. 1.5 Mathematical Representation of Graph

Fig:1.10

Bipartite Graph: A graph G is said to be bipartite, if vertex set is divided
into two disjoint sets such that no two vertices in the same set are connected.

7

Fig. 1.11 below is an example of a bipartite graph in which v = v1 ∪ v2
and v1 = {v0, v1, v2}
and v2 = {v3, v4, v5, v6}

Lemma 1.4.1: If G is a bipartite graph having partitions X and Y, then∑
v∈X deg(v) =

∑
v∈Y deg(v)

Proof: We shall prove this lemma by induction on number of edges of G.
Let |X| = r and |Y | = s , for r, s ¿ 1. (For if r = s = 1, then only one edge can
be drawn and the lemma is trivially true.)

Take subgraph of G consisting of only vertices of G. Now, we shall start with
an induction. Add one edge from any vertex of X and any vertex from Y. Then,∑

v∈X deg(v) =
∑

v∈Y deg(v).
Now, suppose this is true for n – 1 edges, then on adding one more edge,

exactly 1 is added to both ∑
v∈X

deg(v) =
∑
v∈Y

deg(v)

.
Km,n: If a vertex set of a bipartite graph is partitioned into sets of sizes m

and n, respectively and every vertex in the first set connected to every vertex
in the set two then such a bipartite graph is known as complete bipartite graph
and is denoted by Km,n.

Pn is as a path on n vertices.
Cn is a cycle on n vertices.
It is very interesting to note the following theorems.
Theorem : Let G be a graph in which all vertices have degree at least two.

Then G contains a cycle.
Proof: If G has a loop, it contains a cycle of length one, and if G has parallel

edges, it contains a cycle of length two. So we may assume that G is simple.
Let P= [v0v1....vk1

vk] be a longest path in G. Because the degree of vk is
at least two, it has a neighbour v different from vk1

. If v is not on P, the path
01k1kv0v1...vk1vkv is longer than P, which contradicts that P is a longest path.
Therefore, v = vi, for some i, 0 ≤ i ≤ k2.

8

Theorem: Let G be undirected graph. G is bipartite if and only if it has no
odd cycles.

Proof: Let G be bipartite graph. Let if possible it has an odd cycle. Let
the cycle be v1v2...v2k+1v1. Let the two disjoint vertex sets of G be A and B.
Then, we have v1 ∈ A, v2 ∈ Bv3 ∈ Av4 ∈ B and so on v2k+1 ∈ A, v1 ∈ B , a
contradiction that G is bipartite, as v1 ∈ A as well as v1 ∈ B

Thus, G has no odd cycle.
Conversely, let G has no odd cycles. We have to show that G is bipartite.
Without loss of generality, let G be connected, as the same logic can be

applied to each of the components.
Choose any vertex v in the vertex set V of G.
Let A be the set of vertices such that the shortest path from v to each of the

vertex in V is of odd length and B be the set of vertices such that the shortest
path from v to each of the vertex in V is of even length. Then, v ∈ B. Also
A ∪B = V and A ∩B = ϕ

We shall prove that A, B is the partition of G.
For, if not, there exists two incident vertices x1 and x2, both in A or both

in B. Without loss of generality, let both are in A. Then, x1–v there is a path
of odd length, v–x2 there is a path of odd length and hence v–x2–x1–v is in an
odd cycle in G, a contradiction.

Previous theorem says that an even graph contains a cycle. Now let us prove
even stronger result. That is an even graph can be partitioned into cycle and
conversely.

Theorem: Let G (V, E) be an even graph. Then the edge set E of G
can be partitioned into cycles such that no two cycles will share an edge.

Proof: Let G (V,E) be a graph whose vertices are all even. If there is more
than one vertex in G, then each vertex must have degree greater than 0. Begin
at any vertex u. Since the graph is connected (if the graph is not connected
then the argument will be applied to separate components), there must be an
edge u, u1 for some vertex u1 ̸= u. Since u1 has even degree greater than 0,
there is an edge u1,u2.These two edges make a trail from u to u2. Continue
this trail, leaving each vertex on an edge that was not previously used, until we
reach a vertex v that we have met before. (Note: v may or may not be the same
vertex as u. It does not matter either way.) The edges of the trail between the
two occurrences of v must form a cycle. Call the cycle formed by this process
C1. If C1 covers all the edges of G, the proof is complete. Otherwise, remove
the edges forming C1 from the graph, leaving graph, say, G1. All the vertices
in G1 are still even. So pick some vertex u’ in G1. Repeat the same process as
before, starting with an edge {u’,u′

1}. By the same argument, we can generate
a new cycle C2, which has no edges in common with C1. If C2 covers all the
rest of the edges of G, then we are done. Otherwise, remove the edges forming
C2 from the graph, getting graph G2, which again contains only even vertices.
We continue in this way until we have used up all the edges of G. By this time
we have a number of cycles, C1, C2,. . . , Ck which between them contain all

9

the edges of G but no two of them have an edge in common. The converse of
previous Theorem is also true and is obvious. The readers are encouraged to
prove the same.

Regular Graph: A graph is said to be k – regular, if degree of every vertex
v of G is k. A complete graph on p vertices is p–1 regular. Fig. 1.12 below
gives two examples of 3 – regular graphs.

Fig:1.12(a)

Fig:1.12(b)

Tree: A connected graph having no cycle is called as a tree.

Fig:1.13(Tree)

Petersen’s Graph : This graph on 10 vertices and 15 edges is very famous
because it tends to be a counter-example to many generalizations of ideas that
work for smaller graphs. As a rule of thumb, check any conjecture on the
Petersen graph before trying to prove it.

Fig:1.14(Petersen’s Graph)

10

1.5 MATHEMATICAL REPRESENTATION OF GRAPH

Even though the pictorial representation of the Graph gives very good idea
of the problem under consideration, to solve the problem mathematically as well
as electronically, we need to have mathematical representation of the same.The
best way to represent a graph is using matrices. There are two types of matrices
we shall discuss to represent graph, adjacency matrix and incidence matrix.
Incidence Matrix: Let G (V, E) be a graph having n vertices and m edges.
The incidence matrix of G is an n*m matrix; MG : = (mve), where mve = x
where x is the number of times vertex v is incident with edge e.

The incidence matrix of Fig. 1.3 is

Adjacency Matrix: Let G (V, E) be a graph having n vertices. The
adjacency matrix of G is an n x n matrix; AG : = (muv), where

muv = 0 if there is no edge from u to v
= 1 if there an edge from u to v
= 2 if u = v and there is a loop from u to itself.

The adjacency matrix of Fig. 1.3 is

Thus, we observe that in a simple graph, A is symmetric matrix and sum of
the row (/column) elements is degree of the corresponding vertex.

Now let us prove some results based on the discussion above.

11

Theorem: The sum of the degrees of the vertices of a graph G is twice the
number of edges. That is:

∑
degv = 2q, where q is number of edges in the

graph.
Proof: Consider incidence matrix M of graph G. Sum of entries in every

row is precisely, deg(v), and hence sum of all the entries in M is
∑

deg However,
sum of every column is 2 as every edge has two end vertices and there are q
columns corresponding to q edges and hence sum of all the entries in M is 2q.
Thus, we get the required result.

Corollary 1.5.1: In any graph, the number of vertices of odd degree is
even.

Proof: The proof is obvious, as if such vertices are odd in number then∑
degv will be odd, which contradicts Theorem 1.3.1. If G (V, E) is a graph

having no multiple edges, then it can be represented using Adjacency list, which
specifies the list of adjacent vertices to every vertex in the graph. For example,
the adjacency list for the graph of Fig. 1.3 is:

u→{v,w,y}; v→{u,w, y};w→{u,v, x, y}; x→{w, y}and y→ {u,v,w, x}

When a simple graph contains relatively few edges, that is, when it is sparse,
it is usually preferable to use adjacency lists rather than an adjacency matrix to
represent the graph.

Whereas if a simple graph is dense, that is, suppose that it contains many
edges, say, more than half of all possible edges, then using an adjacency ma-
trix to represent the graph is usually preferable over using adjacency lists.

Computationally speaking, adjacency matrices are more convenient than
adjacency lists.

1.6 ISOMORPHISM

Let us have a look at the following graphs.

Fig:1.15(a)

Fig:1.15(b)

12

If the graph in Fig. 1.15(a) is made up of a string, we can changes the
corners appropriately to get the graph of Fig. 1.15(b). The highlighted and
non-highlighted vertices will correspond in these two graphs. Thus, we can say
these graphs are similar though they do not appear to be the same. This gives
us an intuitive idea about isomorphism.

Now, let us define graph isomorphism formally.
Definition: Isomorphism: Two graphs G1 and G2 are isomorphic (written

as G1
∼= G2), if and only if there exists a one-to-one correspondence between

their vertex sets, which preserves adjacency. We make following observations
from the definition above.

1. There exists a bijection f, from vertex set V1 of G1 to the vertex set V2 of
G2.

2. Number of vertices and edges in both the graphs are same.
3. If uv is an edge in G1 then f(u) f(v) is an edge in G2.
4. For any vertex v in G1, degree of v in G1 is same as degree of f(v) in G2.
Once you see that graphs are isomorphic, it is easy to prove it. However,

proving that they are not isomorphic can be sometimes very complex. It is
not practically possible to check all possible correspondences. Hence, to show
that two graphs are non-isomorphic, we try to find some intrinsic property that
differs between the two graphs in question. In the following examples we shall
check whether given pair of graphs are isomorphic.

Example 1.6.1:

Fig:1.16(a)

Fig:1.16(b)

In the figures above, let us have correspondence as: v0→u0,v1→u2,v2→u4,v3→u1
and v4 →u3.Then, this one to one correspondence defines isomorphism between
these to graphs.

13

Example 1.6.2:

Fig:1.17(a)

Fig:1.17(b)

In the both the graphs of Fig. 1.17, there are 4 vertices and 4 edges each.
However, in Fig. 1.17(a), 2 vertices are of degree 2 and 2 are of degree 1 and in
Fig. 1.17(b), there are 3 vertices of degree 1 and one is of degree 3. Thus, these
two graphs are not isomorphic. Example 1.6.3:

Fig:1.18(a)

Fig:1.18(b)

In the both the graphs of Fig. 1.18, there are 6 vertices and 7 edges each.
However, in Fig. 1.15(a), there is one cycle of length 3 and in Fig. 1.15(b) has
no cycle of length 3.

Thus, these two graphs are not isomorphic.

14

Fig:1.19(a)

Fig:1.19(b)

In the both the graphs of Fig. 1.19, there are 8 vertices and 10 edges each.
Also there are 4 vertices of degree 3 and 4 of degree 2 in each of the graphs.
However, in Fig. 1.19 (a) degree of vertices 1 and 3 is 2 and both are connected
to vertices 2 and 4 of degree 3 and in Fig. 1.19 (b) vertices 3 and 4 are of degree
2 and these are connected to one vertex of degree 2 and one vertex of degree
3. Hence, we cannot find one-to-one correspondence between these two graphs
and thus they are not isomorphic.

Definition 1.6.2: Automorphism: An automorphism of a graph is an
isomorphism of a graph to itself.

In case of a simple graph, automorphism is just a permutation α of its
vertex set which preserves adjacency. The automorphisms of a graph reflect its
symmetries. For example, if u and v are two vertices of a simple graph, and if
there is an automorphism α which maps u to v, then u and v are alike in the
graph, and are referred to as similar vertices. Graphs in which all vertices are
similar, such as the complete graph Kn, the complete bipartite graph Kn,n are
called vertex-transitive.

Fig:1.20

The grid graphs of Fig. 1.20 have four automorphisms, (1, 2, 3, 4, 5, 6), (2, 1,
4, 3, 6, 5), (5, 6, 3, 4, 1, 2), and (6, 5, 4, 3, 2, 1). These correspond to the graph
itself, the graph flipped left to-right, the graph flipped up-down, and the graph
flipped left-to-right and up-down, respectively, illustrated above.

15

2 CONNECTIVITY

2.1 Introduction

In the first chapter, we have defined connected graphs and component. In this
chapter, we shall discuss graph connectivity in more details as it is of great
importance in the practical applications. In the computer network, it will be
crucial to know whether data can be transferred if one of the nodes or links
fails. Some connected graphs can be disconnected by removing some vertices or
edges. In this chapter, we shall understand the concept of connectivity further.

2.2 CUT VERTICES, BRIDGES AND BLOCKS

To understand the importance of connectivity intuitively, let us have a look at
the following graphs of Fig2.1. All the graphs are on 5 vertices.

Fig:2.1

G1 is a minimal connected graph; deleting any edge disconnects it. G2 cannot
be disconnected by the deletion of a single edge, but can be disconnected by the
deletion of one vertex, its cut vertex. There are no cut edges or cut vertices in
G3, but even so G3 is clearly not as well connected as G4, the complete graph on
five vertices. Thus, intuitively, each successive graph is better connected than
the previous one. We now introduce two parameters of a graph, its connectivity
and edge connectivity, which measure the extent to which it is connected. For
any graph G,

• δ:Minimum degree of the graph.

• ∆:Maximum degree of the graph.

• k: Connectivity of the graph that is minimum number of vertices that are
to be removed to make the graph disconnected or a trivial.

• k’: Edge connectivity of the graph that is minimum number of edges that
are to be removed to make the graph disconnected or a trivial.

Thus, a connectedv graph is termed as k-connected, if we need to remove k
vertices to disconnect the graph G.

In the graph G1 of Fig. 2.1, δ= k = k’ = 1.
In the graph G2 of Fig. 2.1, δ= 2, k = 1, k’ = 2.
In the graph G3 of Fig. 2.1, δ= 3, k = 0, k’ = 3.

16

Students are encouraged to find these parameters for the graph G4 of Fig.
2.1.

Before we proceed to prove some interesting results, let us define certain
terms related to connectivity.

Definition 2.1.1: Cut vertex (Cut point): Let G (V, E) be a connected
graph. Vertex v∈V , is called as cut vertex, if on removing v along with all its
incident edges from the graph, resulting graph is disconnected.

Definition 2.1.2: Bridge: Let G (V, E) be a connected graph. An e∈E is
called as bridge, if on removing e from G, resulting graph is disconnected.

Definition 2.1.3: Non-separable Graph: A connected, non-trivial graph
having no cut vertices is called as non-separable graph.

Fig:2.2

Fig:2.3

The graph of Fig. 2.3 is 2-connected (i.e. k = 2, e.g., vertices u, v) and it has
k’ = 2 (i.e. on removing edges uy and vx, graph is disconnected).

Definition 2.1.4: Separation: A separation of G of order k is a pair of
subgraphs (H, K) with H ∪K = G and E(H ∩ K) =ϕ and V (H) ∩ V (K) = k.
Such a separation is proper if V (H) V (K) and V (K) V (H) are nonempty.

17

E.g. Separation of graph in Fig. 2.3 is:

Fig:2.4

Thus, from the definition of a separation, we observe that, a connected graph
has a cut vertex if and only if it has 1 – separation. (i.e. | V(H) ∩ V(K)|=1)
Definition 2.1.4: Block: A block of a graph is a maximal nonseparable
subgraph. If G is non-separable, then G itself is a block.

In the connected graph G having vertex set {v0, v1, v2, v3, v4, v5, v6, v7,
v8, v9} of Fig.2.2, edge v3v5 is a bridge. The subgraphs B1, B2, B3, and B4 are
blocks of the given graph.

We can observe that end vertices of a bridge are cut-vertices and an edge is
a bridge if and only it is not on any cycle.

From the above discussion we can easily prove following theorems.
Theorem 2.1.1: Let v be a vertex of a connected graph G (V, E). The

following statements are equivalent.
i. v is a cut vertex of G.
ii. There exist vertices u and w, distinct from v such that v is on every u-w

path.
iii. There exists a partition of the set of vertices V-{v} into subsets U and

W such that for any vertex u∈U and w∈ W, the point v is on every u-w path.
Theorem 2.1.2: Let x be an edge of a connected graph G (V, E). The

following statements are equivalent.
i. x is a bridge of G.
ii. x is not on any cycle of G.
iii. There exist vertices u, v of G such that x in on every path joining u and

v.
iv. There exists a partition of V into subsets U and W such that for any

point u∈U and w∈W ,the edge x in on every path joining u and w.
Remarks:

• If a block B has at least three vertices, then B is 2-connected.

• If an edge is a block of G, then it is a cut-edge of G.

Theorem 2.1.3: Two blocks in a graph share at most one vertex.
Proof: Let, if possible, B1 and B2 are two blocks of G, sharing two or more

vertices. Then the deletion of any one of the vertices will not disconnect B1 or
B2. Thus, B1 ∩ B2 is a subgraph of G having no cut vertex and a block of G,
which contradicts maximality of B1 and B2.

18

• Blocks of G partition its edge set.

• If two blocks share a vertex, then it must be a cut-vertex of G.

Definition 2.1.5: Block Graph: Block graph of a graph G is a bipartite
graph H in which one partition set consists of cut vertices of G and the other
has a vertex bi for every block Bi of G. We include (v, bi) as an edge if cut
vertex v is in block Bi.

Let us illustrate the definition with the help of following graph.

Fig:2.4

The graph of above Fig.2.4 has four blocks B1, B2, B3, B4 and three cut
vertices v1, v2, v3. Hence, Block graph of the same is as below:

Fig:2.5

Theorem 2.1.4: The block graph of a connected graph is a tree.
Proof: We have seen that a block graph of a connected graph is a bipartite

graph. Let B(G) be a block graph of a connected graph G. By adding edges in
a block of G, we do not change B(G), so let us assume that blocks are complete
graphs. Since G is connected, B(G) is also connected. Now, we shall show that
B(G) has no cycle.

Let if possible, it has a cycle C such that its alternate vertices correspond
to cut vertices and blocks of G. It can be shown in the diagram of Fig. 2.6
below. White points represent vertices with respect to blocks and black points
represent vertices with respect to cut vertices.

19

Fig:2.6

Let cut vertices of G in order along C be v0,v1,v2,,vk,v0, then v0v1v2...vkv0
is a cycle C⊆ G. If B ∈C, then B ∪ C is a subgraph of G consisting of complete
graph B together with a cycle C in which one edge is in B and atleast one edge
not in B. Therefore, B ∪ C has no cut vertex, which contradicts maximality of
B.

Now, we shall prove the relationship among k, k’ and δ.
Theorem 2.1.5: For any graph G, k ≤ k’ ≤ .
Proof: We shall prove second part of the inequality first. If G has not edges,

then k’ = 0. Otherwise, if every edge incident to a vertex of minimum degree is
removed, the resulting graph is disconnected. In both these extreme cases, k’≤
δ .

Now we shall prove k ≤ k’. Here we need to consider many cases. If G is
disconnected or trivial, k = k’ = 0. If G is connected and has a bridge at edge e,
then k = 1, because either G has a cut-vertex which is an end vertex of e or G is
K2. Finally, let G has edge connectivity k’, such that k’ ≥ 2. Then, removal of k’
– 1 of these edges will produce a bridge, say, e = uv. For each of these k’–1 edges,
select an incident vertex different from u or v. Removal of these k’–1 vertices
also removes these k’–1 edges and possibly more. If the resulting graph is discon-
nected then k ¡ k’. If not, e = uv is still a bridge in this resulting graph and re-
moval of u or v will result into either trivial or disconnected graph, giving k≤ k’.

Following graph in Fig. 2.3 has k = 2, k’ = 3 and δ= 4.

20

Fig:2.6

2.3 MENGER’S THEOREMS

Menger’s theorem gives characterisation of connectivity of finite, connected
graphs. If u and v are any two vertices in a connected graph, then two paths
connecting u and v are said to be disjoint or vertex disjoint, if they have no
vertex (and hence no edge) in common. The paths are said to be edge disjoint,
if there is no edge common.

Menger discusses minimum number of disjoint paths between any pair of
vertices. Menger proved the results for vertex-connectivity as well as edge-
connectivity.

Before we discuss Menger’s theorem, let us have a look at the graph of Fig.
2.7 below:

Fig:2.7

In the Fig. 2.7, we observe that there are three vertices disjoint from u to v,
viz. u-x-y-t-v, u-zv and u-r-s-v.

Vertex version of Menger’s theorem discusses about the vertex disjoint path.
Theorem 2.2.1:(Menger’s Theorem – Vertex Form): The minimum

number of vertices separating two non-adjacent vertices s and t is the maximum
number of number of disjoint paths connecting s and t.

21

Proof: If k vertices separate s and t, then obviously there can be no more
than k disjoint paths. We shall show that these are exactly k. That is if there
are k vertices separate s and t then exactly k internally disjoint paths separate
s and t. This is true if k = 1. So let k ¿ 1 and if possible the result is wrong.
That is it takes less that k disjoint paths to disconnect s and t. Let h be the
smallest such k, and let F be a graph with the minimum number of vertices for
which the theorem fails for h. We remove edges from F until we obtain a graph
G such that h vertices are required to separate s and t in G but for any edge
x of G, only h – 1 vertices are required to separate s and t in G – x. We first
investigate the properties of this graph G, and then complete the proof of the
theorem.

By the definition of G, for any edge x of G, there exist a set S(x) of h – 1
vertices which separates s and t in G – x. Now G – S(x) contains at least one
s-t path, since it takes h points to separate s and t in G. Each such s-t path
must contain the edge x = uv, since it is not a path in G – x. So u, v /∈ S(x)
and if u ̸= s, t, then S(x) ∪ {u} separates s and t in G. If there is a point w
adjacent to both s and t in G, then G –w requires (h – 1) points to separate s
and t and so it has h – 1 disjoint s-t paths. Replacing w, we have h disjoint s-t
paths in G. So we have shown:

(I) No point is adjacent to both s and t in G.
Let W be any collection of h points separating s and t in G. An s –W path is

a path joining s with some wi ∈ W and containing no other point of W, call the
collections of all s-W paths and W-t paths Ps and Pt, respectively. Then each s-t
path begins with a member of Ps and ends with a member of Pt because every
such path contains a point of W. Moreover, the paths in Ps and Pt, have the
points of W and no others in common, since it is clear that each wi is in at least
one path in each collection and, if some other point were in both an s-W and a
W-t path, then there would be an s-t path containing no point of W. Finally,
either Ps – W = s or Pt – W = t, since, if not, then both Ps plus the lines w1t,
w2t, ... and Pt plus the lines sw1, sw2, ... are graphs with fewer points than
G in which s and t are nonadjacent and h - connected, and therefore in each
there are h disjoint s-t paths. Combining the s-W and W-t portions of these
paths, we can construct h disjoint s-t paths in G, and thus have a contradiction.
Therefore we have proved:

(II) Any collection W of h points separating s and t is adjacent either to s
or to t. Now we can complete the proof of the theorem. Let P = {s,u1,u2,...t}
be a shortest s-t path in G and let u1u2 = x. Note that by (I), u2̸=t. Form
S(x) = {v1, v2, ..., vk–1} as above, separating s and t in G –x. By (I), u1t /∈ G
and hence by II with W = S(x) ∪ u1, svi ∈ G, for all i. Thus, by (I), vit /∈ G,
for every i. However, if we pick W = S(x) ∪ u2 instead, we have by (II) that
su2 ∈ G, contradicting our choice of P as a shortest s-t path, and completing
the proof of the theorem.

Definition 2.2.1: Line Graph: Let G be any graph. Line graph of G,
denoted by L (G) is such that each vertex in L(G) represents an edge in G and
if two edges are adjacent in G then there is an edge between two vertices of
L(G) corresponding to these two edges.

22

Fig. 2.8 below gives an example of a graph and its line graph.

2.4 CONSTRUCTION OF RELIABLE COMMUNICA-
TION NETWORK

As we have seen in the first chapter, one of the applications of graph theory is to
represent graph as a communication network. While constructing this network,
it is necessary to make it sure that it does not get disconnected too often. Higher
the connectivity and the edge connectivity of the network, the more reliable the
network is. Minimum cost spanning tree constructed using Kruskal’s algorithm
(discussed in chapter 3), has connectivity 1 and hence it is not much reliable.
Therefore, we try to generalise the problem.

Let k be given integer and let G be a weighted graph. Our aim is to find
minimum weight k – connected spanning subgraph. If k = 1, the problem can
be solved using Kruskal’s method. For k > 1, the problem is difficult and no
solution is known. However, if G is a complete graph having unit weight, then
it can be solved by then method given below.

If G is a complete graph on n vertices having unit weight, then the problem
is simply to find a minimum m–connected (m < n) spanning subgraph, with as
few edges as possible. We shall denote by f(m, n), the least number of edges an
m –connected graph on n vertices can have and denote such a graph by Hm,n.
Structure of Hm,ndepends on parities of m and n, and we have three cases as
below.

Case 1: Let m be even, m=2r. Number the vertices of graph on n vertices
from 0 to n – 1.

Connect vertices i and j if j – i = s(mod n) is such that 0 ≤ s ≤ r.
Case 2: Let m be odd, m = 2r + 1 and n even. First draw Hm, n and then

add edges from i to i + (n/2).
Case 3: Let m be odd, m = 2r + 1 and n is also odd. Then H2r+1, n is

constructed first by drawing H2r,n and then by adding edges joining vertex 0 to
vertices n−1

2 andn+1
2 vertex i to vertex i+n−1

2 for 1 ≤ i ≤n−1
2

These three cases are shown in the Fig. 2.9(a), (b) and (c) below.

Fig:2.9

23

2.5 DIJKSTRA’S ALGORITHM

If G (V, E) is any connected graph and u, v are any two arbitrary vertices in V.
Then, there may exist multiple paths from u to v. One of the very important
and practical applications of Graph theory is to find the shortest path from one
vertex (node) to the other. The term “shortest” may refer to minimum distance,
least cost or least time.

One of the most important algorithms which is of prime importance in Graph
Theory is credited to a computer scientist Dijkstra. Main reason for the popu-
larity of Dijkstra’s algorithm is that it provides exact optimal solution to a large
class of shortest path problems, and it is important theoretically, practically as
well as educationally.

Before we proceed to discuss the example and algorithm, let us have a look
at its salient features.

• Algorithm gives solution to single source shortest path problems.

• It works on both directed and undirected graphs.

• All edges must have non-negative weights.

• Graph must be connected.

Before we proceed to the algorithm, let us understand the same with the
help of an example

Fig:2.10

Let us say, we have to find minimum distance from v0 to every other vertex and
the shortest path from v0 to every other vertex.

We shall start with vertex v0 and subsequently visit every vertex and once
all the vertices are visited, we will terminate the procedure.

Let us introduce some parameters for the same.
L(i) : Shortest distance between v0 and vertex i. V : Set of visited vertices

U : Set of vertices not visited so far w(i, j): Weight of edge connecting vertices
i and j P(i) : Shortest path from v0 to i.

24

To begin with, we shall have L(v0) = 0 and L(v1) = L(v2) = L(v3) = L(v4)
= L(v5) = . V = , U = {v0, v1, v2, v3, v4, v5}, P(v1) = P(v2) = P(v3) = P(v0)
= P(v5) = .

Initially, let v0 be only visited vertex and hence V = {v0}. We check all the
edges having one end point in V and other in U for their distances and update
V by picking up vk for which L(vk) is minimum. We keep on updating paths
from v0 to vk every time. We shall continue the process till all the vertices of
the graph are visited.

Step I:
V = v0 , P(0) = v0. Now observe all the vertices adjacent to v0 and update

these parameters as below:
L(v1) = min {L(v1), L(v0) + w(v0, v1)} = min{ ∞ ,0 + 2} = 2, P(v1) =v0,

v1
L(v2) = min {L(v2), L(v0) + w(v0, v2)} = min{ ∞ , 0 + 3} = 3, P(v2) =v0,

v2
As L(v1) is minimum, V = v0, v1.
Step II:
L(v2) = min {L(v2), L(v1) + w (v1, v2)} = min 3, 2 + 6 = 3, P(v2) = {v0,

v2}
L(v3) = minL(v3), L(v1) + w(v1, v3) = min{∞, 2+} = 7, P (v3) = v0, v1, v3
L(v4) = min{L(v4), L(v1) + w(v1, v4)} = min{∞, 2 + 3} = 5, P (v4) =

v0, v1, v4
As L(v2) is minimum, V = {v0, v1, v2}
Step III:
L(v3) = minL(v3), L(v2) + w(v2, v3) = min{7, 3+∞} = 7, P (v3) = v0, v1, v3
L(v4) = minL(v4), L(v2) + w(v2, v4) = min5, 3 + 1 = 4, P (v4) = v0, v2, v4
As L(v4) is minimum, V = {v0, v1, v2, v4}
Step IV:
L(v3) = min{L(v3), L(v4)+w(v4, v3)} = min7, 4 + 1 = 5, P (v3) = v0, v2, v4, v3
L(v5) = minL(v5), L(v4) + w(v4, v5) = min∞, 4 + 4 = 8, P (v5) = {v0, v2, v4, v5}

As L(v3) is minimum, V = {v0, v1, v2, v4, v3}
Step V:
L(v5) = minL(v5), L(v3) + w(v3, v5) = min8, 5 + 2 = 7, P (v5) = v0, v2, v4, v3, v5

Thus, V = v0, v1, v2, v3, v4, v5.
All the vertices are visited and we have found the shortest path and distance

from v0 to every other vertex.
In fact, what we have presented above is Dijkstra’s shortest path method.
Now, let us present the steps of the algorithm
Dijkstra’s Shortest Path Algorithm:
Let G (V, E) be any connected, weighted graph, withGV = {v0, v1, v2, ..., vn}.
Parameters:
L(vi) : Shortest distance between source s = v0 and vertex vi.
P(vi) : Set of vertices giving shortest path from s to vi.
V : Set of visited vertices
U : Set of vertices not visited so far
w (vi, vj) : weight of an edge from vi to vj.

25

z : Destination vertex
Initial Values:
V = ϕ , U = GV, L(s = v0) = 0, P(s = v0) = {v0}
L(vi) = ∞ ; for 1 ≤ i ≤ n P(vi) = ϕ ; for 1 ≤ i ≤ n
Procedure:
While z ∈ U
Begin
u : vertex in U with L(u) minimum
V := V ∪u
For every x ∈ U
Begin
If (L(x) ¿ L(u) + w (u, x)) then
(x) := L(u) + w(u, x)
P(x) := P(u) ∪ x
End If
End
End

26

3 TREES

3.1 Introduction

In the chapter 2, we have defined trees and also its relationship with block
graphs. In this chapter, we shall explore trees in details and also discuss a few
practical applications of the same.

First, we will be enumerating all the trees on n vertices. Before that, let us
draw trees on 7 vertices. A Few of such trees are shown in Fig. 3.1.

Following figure gives trees on 7 vertices.

Fig:3.1

Let us know a few more terms related to tree. As tree is an acyclic graph,
acyclic graphs are called as Forest.

We have seen a spanning subgraph of a graph G in the chapter 1. If a
spanning subgraph of a connected graph is a tree, it is called as spanning tree.
Spanning trees are of utmost importance in the applications of graph theory.

Fig. 3.2(b) below is a spanning tree of the graph of Fig.3.2(a).

Fig:3.2(a)

Fig:3.2(b)

27

We also observe the following facts about trees from the definition of tree and
the discussion so far.

1. In a tree, any two vertices are connected by exactly one path. (For more
than one path would result into a cycle.)

2. From Theorem 1.4.1, we know that if degree of every vertex is at least
two, then the graph contains a cycle. And hence every tree has at least one
vertex of degree at most one. In fact, if the tree is nontrivial then it has a
vertex of degree exactly one. Vertex of degree one in a tree is termed as leaf.

3. Result: For a tree p = q + 1, or number of vertices is exactly one more
than the number of edges.

Proof: Let T be a tree having p vertices and q edges. If T is trivial, then
p = 1 and q = 0. Hence, the result is true. If T is K2, then p = 2 and q = 1.
Again the result holds true. Let T be non-trivial and not K2. We shall prove
the result by induction on number of vertices. Let the result be true for a tree
having less than p vertices. Now, T has p vertices and it is non-trivial. Hence,
it has at least one leaf, say at vertex v. Then, T – v is again a tree having p –
1 (< p) vertices and q –1 edges. By induction hypothesis, p – 1 = (q – 1) + 1.
Simplifying we get p = q + 1, as required.

4. Every non-trivial graph has at least two leaves. This follows easily from
the theorem above, as

∑
di = 2q = 2(p – 1).

5. Let e = uv be any edge in tree T. Then, e has to be its cut edge, for if
not, after removing e from T, T will be connected and hence, we will get a uv
path in T – e, a contradiction to property 1 above.

6. Every non-leaf vertex of a tree is its cut vertex. For, let u be a vertex
of a tree having degree at least 2 and v and w are its adjacent vertices. Then,
uv and uw are the only paths from u to v and u to w respectively. Hence, on
removing u from the tree, it becomes disconnected.

7. Every tree is bipartite. To see that, choose any vertex v from tree. Now
divide vertices of the tree in two sets A and B such that, u ∈A, if d(v, u) is even
and u ∈ B, if d(v, u) is odd. By this choice, v∈A. Thus, A ∪ B = V (vertex set
of the tree) and A ∩ B = ϕ .

8. A graph is connected if and only if it has a spanning tree. A spanning
tree is a connected graph. From a connected graph, delete one edge at a time
to remove cycles and we get a spanning tree

3.2 CHARACTERISATION OF TREES

Theorem 3.2.1: Let G(V, E) be a graph having p vertices and q edges.The
following statements are equivalent for G.

i. G is a tree.
ii. Every two points of G are joined by a unique path.
iii. G is connected and p = q + 1.
iv. G is acyclic and p = q + 1.
v. G is acyclic and any two nonadjacent vertices of G are joined by an edge

e, then G + e has exactly one cycle.
vi. G is connected and every edge of G is in cut edge.

28

This characterisation of tree can be proved from the discussion so far.

3.3 EDGE CUTS AND BONDS

First, we shall start with edge cuts.
Let G(V, E) be a graph and X, Y by subsets of V, not necessarily distinct.

We denote E[X, Y] to be the set of all edges of G having one end in X and the
other in Y and by e(X, Y) their number. If X = Y, we simply write as E(X)
and e(X) for E[X, X] and e(X, X). If Y = V – X, the set E[X, Y] is called as
the edge cut associated with X and is denoted by δ (X). Obviously, (X) = δ (V
– X) and δ (V) = ϕ .

Let us illustrate edge cuts with an example.

Fig:3.3

The minimal edge cut of a graph is called as bond, thus bond is an edge cut
such that none of its edge-subset is an edge cut. To illustrate, let us have a look
at the following figure.

Fig:3.4

In the Fig. 3.4, δ (u, v, x) is a bond whereas δ (u, y) is not as it has a subset
which is an edge cut.

Now we shall discus two important results associated with edge cuts.

3.4 GRAPHS AND VECTOR SPACE

Before, we define a vector space on graph, let us first define a binary operation
- symmetric difference (denoted by ∆), on graphs. Let G (V, E) be a graph,
having p vertices and q edges.

Let E = {e1, e2,, eq}. Let E1 and E2 be two subsets of E. We define,
E1∆E2 as:

29

E1∆E2 = E1 ∪E2 – E1 ∩E2. Thus, for a graph in Fig. 3.5 below, we shall
illustrate ∆.

Fig:3.5

Fig:3.6

Fig. 3.5 shows a graph on 8 vertices and 10 edges. E1 and E2 are two subsets
of edge set E of the graph. Then the Fig. 3.6 shows E1 δ E2

E1= {e1, e2, e4, e5}, E2 = {e2, e5, e7, e8}, then E1∆E2= {e1, e4, e7, e8}
Notations : If X and Y are two subsets of edge set E of a graph G(V, E),

having p vertices and q edges, we associate vectors X = (x1, x2, ..., xq) and Y
= (y1, y2, ..., yq), such that, xi = 1, yj = 1, if edge xi ∈X, edge yj ∈ Y , else
xi = 0, yj = 0. We define operation ∆ on the elements of X, Y with a rule: 1
∆ 1 = 0, 0 ∆ 0 = 0, 1 ∆ 0 = 1 and 0 ∆ 1 = 1. Thus, for the edge sets E1 and
E2 in the example above, we have, vector E1 = (1, 1, 0, 1, 1, 0, 0, 0, 0, 0) and
vector E2 = (0, 1, 0, 0, 1, 0, 1, 1, 0, 0) and hence vector E1∆E2 = (1, 0, 0, 1,
0, 0, 1, 1, 0, 0). Thus, E1∆E2 = {e1, e4, e7, e8}, as we have obtained earlier.

Thus, the q-vector representing the symmetric difference of q-vectors E1 and
E2 is in fact the q-vector of symmetric difference of E1 and E2. But, E1 and
E2 are two subgraphs of G. Hence, we have defined binary operation on the
subgraphs and also represented these subgraphs in the form of a vector. The
set of all 2 q q-vectors, (all zeros indicate null graph), is a set of all edge induced
subgraphs of G. We denote it by ϵ (G). This set forms a vector space on the
field GF(2) or Z2. This can be easily verified.

1. ϵ (G) is an abelian group under ∆ .
a. Let X, Y be any two vectors (edge sets) in ϵ (G). Then, X∆ Y is also a

vector in ϵ (G), and hence ϵ (G) is closed under ϵ (G).

30

b. Vector associated with ϕ is (0, 0,, 0) and X ∆ (0, 0,, 0) = X = (0,
0,, 0). Thus, identity exists.

c. If X is any edge vector, then, X∆ X = 0 (zero vector). This shows the
existence of inverse with respect to ∆ .

d. The operation ∆ is clearly commutative.
2. Scalar multiplication on vectors is distributive.
3. Scalar multiplication is associative.
Also observe that vectors (1, 0, 0, ..., 0) associated with edge set e1, (0,

1, 0,, 0) associated with edge set {e2},, (0, 0,, 0, 1) associated with
edge set {eq}, forms a basis for the vector space. Thus, the dimension of the
vector space ϵ (G) is q. Definition 3.3.1: Fundamental Cycle: Let T be
any spanning tree of a connected graph G.

Adding just one edge to a spanning tree will create a cycle; such a cycle is
called a fundamental cycle with respect to a spanning tree T.

There is a distinct fundamental cycle for each edge; thus, there is a one-to-
one correspondence between fundamental cycles and edges not in the spanning
tree. For a connected graph with p vertices, any spanning tree will have p − 1
edges, and thus, for a graph of q edges and any one of its spanning trees will
have q − p+ 1 fundamental cycles.

Fig:3.7

Note: Number on the edge indicate just an edge number, so 3 means e3.
In the above Fig. 3.7, T is a spanning tree of graph G and C3, C6, C7 and

C8 are fundamental cycles of G with respect to T. (Ci is obtained from T by
adding an edge ei).

For any given spanning tree the set of all q - p + 1 fundamental cycles forms
a cycle basis, a basis for the cycle subspace of ϵ (G).

3.5 CAYLEY’S FORMULA

Cayley’s formula counts the number of labelled trees on n vertices. In other
words, it counts the number of spanning trees of a complete graphKn. However,
it does not count the number of non isomorphic trees on n vertices.

31

Before we proceed to the formula, let us find number of labelled trees for
small values of n such as 2, 3, 4 and then we shall generalise using Cayley’s
formula.

For n=4 t4=14

Fig:3.8

Let Tn denote number of labelled trees on n vertices. Then, Cayley’s Formula
states that: Tn = n(n–2).

Now let us count number of labelled trees on n vertices. In fact, Cayley’s
formula gives this count and many proofs of the formula are available. We shall
use the simplest algorithm for counting that is “Prüfer Encoding”. Before we
proceed to the proof of the formula, let

us understand “Prüfer Encoding”.

32

Prüfer Encoding: The most straight forward method of showing that a
set has a certain number of elements is to find a bijection between that set and
some other set with a known number of elements. In this case, we are going
to find a bijection between the set of Prüfer sequences and the set of spanning
trees.

A Prüfer sequence is a sequence of n – 2 numbers, each being one of the
numbers from 1 to n. We observe that, there are nn–2 Prüfer sequences for any
given n, where we allow repetitions. The following is an algorithm that can be
used to encode any tree into a Prüfer sequence. Let Tn be a set of all trees on
n vertices.

Algorithm (Coding):
1. Take any tree, t ∈ Tn, whose vertices are labelled from 1 to n in any

manner.
2. Let i = 1, t1 = t.
3. From ti, choose vertex v with the smallest label whose degree is equal to

1, and write down the value of its only neighbour, say ai (1 ≤i ≤ n–1) (We have
already shown that any tree must have at least two leaf vertices).

4. Construct tree ti+1 from ti by removing vertex v and edge vai.
5. Update i to i + 1. Repeat from step 3 for the new, smaller tree. Continue

until only one vertex remains.
6. Drop last neighbour from the list to get a sequence of n – 2 vertices. (In

fact, we observe that the last in the least is always the vertex with the highest
label.) Now, we shall apply this algorithm to a tree on 8 vertices below.

Fig:3.9

Step 1: Remove vertex v = 1 and a1 = 2
Step 2: Remove vertex v = 2 and a2 = 4
Step 3: Remove vertex v = 3 and a3 = 4

33

Step 4: Remove vertex v = 6 and a4 = 4
Step 5: Remove vertex v = 4 and a5 = 5
Step 6: Remove vertex v = 7 and a6 = 5
Step 7: Remove vertex v = 5 and a7 = 8
Now, as per the algorithm, we have to drop a7 = 8 and hence the Prüfer

sequence is: 2, 4, 4, 4, 5, 5. We observe that the vertex label frequency in the
sequence is deg (vertex) – 1. Also a vertex with degree one never appears in the
sequence.

Thus, we have seen how to construct a Prüfer Sequence from a tree. Now
is the time to construct a tree from a given Prüfer sequence P. We shall first
discuss the algorithm for the same.

Algorithm (Decoding):
1. P is given Prüfer sequence and L = 1, 2,, n–1, n.
2. Let j: First label in P and k: the least number in L that does not occur

in P.
3. Connect an edge between j and k.
4. Remove j and k from P and L respectively.
5. Perform steps 2 to 4, till P is non-empty.
6. There will be exactly two numbers in L remaining. Join an edge between

these two.
Thus, we get a tree corresponding to given Prüfer sequence.
Now, let us apply it on the Prüfer sequence P = 2, 4, 4, 4, 5, 5.
Step 1: P = 2, 4, 4, 4, 5, 5; L = 1, 2, 3, 4, 5, 6, 7, 8; j = 2; k = 1
Step 2: P = 4, 4, 4, 5, 5; L = 2, 3, 4, 5, 6, 7, 8; j = 4; k = 2
Step 3: P = 4, 4, 5, 5; L = 3, 4, 5, 6, 7, 8; j = 4; k = 3
Step 4: P = 4, 5, 5; L = 4, 5, 6, 7, 8; j = 4; k = 6
Step 5: P = 5, 5; L = 4, 5, 7, 8; j = 5; k = 4
Step 6: P = 5; L=5, 7, 8; j = 5; k = 7
Step 7: P = ϕ ; L = 5, 8
Step 8: Connect edge 5-8.

34

Fig:3.10

Following the above steps, we have now reconstructed our original tree on 8
vertices, as in Fig. 3.9. It may be oriented differently, but all of the vertices are
adjacent to their correct neighbours, and so we have the correct tree back. Since
there were no ambiguities on how to encode the tree or decode the sequence, we
can see that for every tree there is exactly one corresponding Prüfer Sequence,
and for each Prüfer Sequence there is exactly one corresponding tree. More
formally, the encoding function can be thought of as taking a member of the
set of spanning trees on n vertices, Tn, to the set of Prüfer Sequences with n-2
terms, Pn . Decoding would then be the inverse of the encoding function, and
we have seen that composing these two functions results in the identity map. If
we let f be the encoding function, then the above statements can be summarized
as follows: f: Tn → Pn, f

−1 : Pn → Tn , and f−1 f = I.
Since we have found a bijective function between Tn and Pn , we know that

they must have the same number of elements. We know that |Pn| = nn−2 , and
so |Tn| = nn−2.

3.6 ROOTED AND BINARY TREES

rooted tree T(x) is a tree T with a specified vertex x, called the root of T. An
orientation of a rooted tree in which every vertex but the root has in-degree one
is called a branching. We refer to a rooted tree or branching with root x as an
x-tree or x-branching, respectively

35

Fig:3.13

In the Fig. 3.13 above, R is root having in-degree 0 and out-degree 3. The
vertices a1, a2 and a3 have in-degree 1 and out-degrees 2, 1 and 3 respectively.
Vertices l1, l2, l3, l4, l5 and l6 have in-degree 1 each and out-degree 0. Vertices
having out degree 0 are termed as leaves.

Vertices a1, a2 and a3 are called as children of R and R is the parent of these
vertices. Vertices a1, a2 and a3 are siblings, as they have same parent.

Thus, rooted tree is a directed graph.
Binary trees are special kind of rooted trees. In binary trees there are max-

imum 2 children to any vertex. Vertex having no child is as before termed as
leaf.

Fig:3.14(a)(b)

Rooted trees and branching are effective tools in designing of efficient algorithms
for the purpose of reachability. There are certain terminologies exclusively as-
sociated with rooted binary trees.

• The depth of a node is the number of edges from the root to the node.

• The height of a node is the number of edges from the node to the deepest
leaf.

• The height of a tree is a height of the root. (Thus, height of tree in Fig.
3.14(a) is 2)

36

• A complete binary tree is a binary tree, which is completely filled, with
the possible exception of the bottom level, which is filled from left to right.
(Fig. 3.14(b))

As graphs and trees have many real life applications, the vertices are usually
used to store some data and we may need to search or traverse to the node to
access the data. Hence, traversal is of utmost importance in graphs and trees.
Now, shall look at some algorithms for the tree and graph traversals.

3.7.1 Breadth First Search:
In most types of tree-search, the criterion for selecting a vertex to be added

to the tree depends on the order in which the vertices already in the tree T
were added. A tree-search in which the adjacency lists of the vertices of T
are considered on a first-come-first-served basis, that is, in increasing order of
their time of incorporation into T, is known as breadth-first search. In order to
implement this algorithm efficiently, vertices in the tree are kept in a queue; this
is just a list Q which is updated either by adding a new element to one end (the
tail/ rear of Q) or removing an element from the other end (the head/front of
Q). At any moment, the queue Q comprises all vertices from which the current
tree could potentially be grown.

Initially, at time t = 0, the queue Q is empty. Whenever a new vertex is
added to the tree, it joins Q. At each stage, the adjacency list of the vertex at
the head of Q is scanned for a neighbour to add to the tree. If every neighbour
is already in the tree, this vertex is removed from Q. The algorithm terminates
when Q is once more empty. It returns not only the tree (given by its predecessor
function p), but also records the level of each vertex in the tree and, more
importantly, their distances from r in G. It also returns a function t which
records the time of incorporation of each vertex into the tree T. We keep track
of the vertices in T by colouring them black. The notation G(x) signifies a graph
G with a specified vertex (or root) x. Recall that an x-tree is a tree rooted at
vertex x.

Algorithm: Breadth-First Search (BFS) Input: a connected graph G(r)
Output: an r-tree T in G with predecessor function p, a level function l, such
that l(v) = dG(r,v) for all v ∈ V , and a time function t

1: set i := 0 and Q := ϕ
2: increment i by 1
3: colour r black
4: set l(r) := 0 and t(r) := i
5: append r to Q
6: while Q is nonempty do
7: consider the head x of Q
8: if x has an uncoloured neighbour y then
9: increment i by 1 46 138 6 Tree-Search Algorithms
10: colour y black
11: set p(y) := x, (y) := (x) + 1 and t(y) := i
12: append y to Q
13: else

37

14: remove x from Q
15: end if
16: end while
17: return (p,l, t).
Before we discuss the algorithm in detail, let us first implement it on the

following graph.

Fig:3.15

Table:3.1

38

Q: ϕ → 1 → 12 → 123 → 1234 → 12345 → 2345 → 23456 → 234567 → 34567 →
345678 → 3456789 → 456789 → 45678910→ 5678910 → 567891011 → 67891011
→ 6789101112 → 789101112 → 89101112 → 9101112 → 910111213 → 10111213
→ 111213 → 1213 → 13 → ϕ .

Based on this, the highlighted edges in the Fig. 3.15 show the BFS tree.
3.7.2 Depth-First Search
Depth-first search is a tree-search in which the vertex added to the tree T at

each stage is one which is a neighbour of as recent addition to T as possible. In
other words, we first scan the adjacency list of the most recently added vertex
x for a neighbour not in T. If there is such a neighbour, we add it to T. If not,
we backtrack to the vertex which was added to T just before x and examine its
neighbours, and so on. The resulting spanning tree is called a depth-first search
tree or DFS-tree.

This algorithm may be implemented efficiently by maintaining the vertices
of T whose adjacency lists have yet to be fully scanned, not in a queue as we
did for breadth-first search, but in a stack. A stack is simply a list, one end of
which is identified as its top; it may be updated either by adding a new element
as its top or else by removing its top element. In depth-first search, the stack S
is initially empty. Whenever a new vertex is added to the tree T, it is added to
S. At each stage, the adjacency list of the top vertex is scanned for a neighbour
to add to T. If all of its neighbours are found to be already in T, this vertex is
removed from S.

The algorithm terminates when S is once again empty. As in breadth-first
search, we keep track of the vertices in T by colouring them black. Associated
with each vertex v of G are two times: the time f(v) when v is incorporated into
T (that is, added to the stack S), and the time l(v) when all the neighbours of v
are found to be already in T, the vertex v is removed from S, and the algorithm
backtracks to p(v), the predecessor of v in T. The time increments by one with
each change in the stack S. In particular, f(r) = 1, l(v) = f(v) + 1 for every leaf
v of T, and l(r) = 2n.

Algorithm: Depth-First Search
Input: a connected graph G
Output: a rooted spanning tree of G with predecessor function p, and two

time functions f and l.
1: set i := 0 and S :=
2: choose any vertex r (as root)
3: increment i by 1
4: colour r black
5: set f(r) := i
6: add r to S (that is push r on stack S)
7: while S is nonempty do
8: consider the top vertex x of S
9: increment i by 1 48
10: if x has an uncoloured neighbour y then
11: colour y black
12: set p(y) := x and f(y) := i

39

13: add y to the top of S (that is push y on stack S)
14: else
15: set l(x) := i
16: remove x from S (that is pop x from the stack S)
17: end if
18: end while
19: return (p, f, l)
Now, let us apply DFS above for the graph below: Highlighted edges in the

graph indicate DFS tree.

Fig:3.16

40

Table:3.2

Note: Unused columns are used to indicate push and pop.

41

4 Matching and Ramsey Theory

subsectionINTRODUCTIONMatching theory is used to find the similarity be-
tween the graphs. It is an important tool in the fields like computer vision and
pattern recognition. Matching has applications in flow networks, scheduling
and planning, modeling bonds in chemistry, graph coloring, the stable marriage
problem, neural networks in artificial intelligence and more. In image recogni-
tion applications, the results of image segmentation in image processing typically
produces data graphs with number of vertices much larger than in the model
graphs data expected to match against. Perfect Matching theory is also known
as graph isomorphism problem. Many graph matching algorithm exist in order
to optimize for the parameters. First we have to go through some definitions.

Matching in Graph: A matching in graph G is a set M = {e1, e2, e3, , ek}
of edges such that each vertex v ∈ V (G) appears in at most one edge of M i.e
ei∩ ej = ϕ for all i, j.

The size of matching is the number of edges that appears in the match- ing.
M- Saturated vertex:A vertex v is called as M- saturated if for some e

= {xy}, e ∈ M. If x is not saturated then it is unsaturated. 2 |M | =number of
M- saturated vertices.

Perfect Matching: A perfect matching in a graph G is a matching in
which every vertex of G appears exactly once, i.e Which saturates every vertex
or a matching of size exactly

n

2
.

Maximum Matching: A matching m is called maxi- mum if no other
matching in G has a larger size.

M- alternating Path: Let M be a matching in a graph G . A path P in G
is said to be M-alternating if every other edge in P appear in M

M- augmenting Path:An M-augmenting path is an M-alternating path P
= {v1, v2, v3, , vk} such that both v1, vk are not vertices in M.

Berg theorem:Let M be matching in a graph G Then M is a maximum
matching if and only if there does not exist any M- augmenting path in G.

Proof. Suppose that M is a matching in G, such that there exist an M-
augmenting path say P. Notice that P must have odd length. Since its edges
alternate between edges in M and edges in G M, and further both begins and
ends with edges from G M. Let M0 be the set of edges in P that are not in M.
Then notice that — M0 —¿— M — and M0 is a matching in G. so M is not
a maximum matching. Hence if M is a maximum matching, there can not be
any M-augmenting path in G. Conversely assume that M is a matching having
no M-augmented path in G. Let M2 be a maximum matching in G. Note that
by above argu- ment , there is no M2 augmenting path in G. Let H be the sub
graph of G having E(H) = {e ∈ Mbute ∈ M2} ∪ {e ∈ M2bute ∈ M}. Let us
consider the possible components of H. Note that every vertex has degree 0, 1,
or 2 in H. Vertices of degree 0 are disregarded as their components are trivial. If
a component has all ver- tices of degree 2. It must be an even cycle alternating

42

between edges of M and edges of M2. If a components has a vertex degree
1 it must be a path, alternating between edges of M and edges of M2. Note
that neither M nor M2 has an augmented path G, we must have that such a
components begins with an edge from one matching and ends with an edge from
other matching. In either cases every non trivial component of H has exactly
half of itsedges from M and exactly half of its edges from M2. Hence we must
have that

|M\M2| = |M2\M |

. Hence

|M | = |M ∩M2|+ |M\M2| = |M ∩M2|+ |M2\M | = |M2|

. and thus M is also a maximum matching in G.

5 MATCHING IN BIPARTITE GRAPHS

Let G be a graph with vertex set partitioned into two subsets A and B such
that every edges in G has one end points in A and the other in B. Such graph is
called as Bipartite graph. We will use the notation G(A, B) for bipartite graph.
Suppose that A and B are subsets of G. We can say that A can match with B
if there exist a Matching M = {e1, e2, e3, , ek} such that each ei has one vertex
in A and the other in B and every vertex in A and B appears in the matching.

5.1 Neighbour set of S in Graph G:

N(v)={u ∈ V (G)|uisadjacenttov}iscalledasthesetofneighbourofv.GivenasetS⊂
V (G), we write N(S) = v ∈ SN(v) is the set of vertices that are adjacent to
atleast one vertex in S.

Hall’s TheoremLet G(A, B) be a bipartite graph. Suppose that

|A ≤ |B|

. Then there exists a matching M of size

|A|

in G if and only if for every subset S

⊂ A,wehavethat|N(S)| ≥ |S|

. In particular, If
|A| = |B|

, then G has a perfect matching under this condition.
proof Let A = {u1, u2, , uk} and B = {v1, v2, , vl} with k ≤ l. First suppose

that there exist a matching M of size |A| in G. Since G is bipartite, every edges of
M includes one vertex of A. By possible relabeling of B, suppose that M = {e1,

43

e2, · · · , ek}whereei = {ui, vi}foreachi.LetS ⊂ A with S = {us1, us2, , ust}.
Then vsj ∈ N(S) for all 1 ≤ j ≤ t. and hence |N(S)| ≥ t = |S|. Converse we
prove by induction on |A|. First , note that if |A| = 1, the theorem is trivial. Let
us assume that the theorem holds for |A| = k − 1. Let G(A, B) be a bipartite
graph with |A| = ksatisfying Hall’s condi- tion. we consider two cases.

case1:For every proper subset S of A, |N(S)| ≥ |S|+1. Consider u1, without
loss of generality suppose that u1 is adjacent to v1 (and possibly some other
vertices also). Consider the subgraph H of G on A\{u1}, B{v1}, i.e remove
both vertices u1 and v1 from consideration. Let S be a subset of A\{u1}. Then
note that NH(S) is either equal to NG(S) or has been reduced in size by 1 due
to removal of v1. In either case, |NH(S)| ≥ |NG(S)| − 1 ≥ |S|. And hence
H satisfies Hall’s condition. We can therefore obtain a matching in H of size
|A|−1 by the induction hypothesis. adding the edge {u1, v1} to such a matching
produces a matching in G of size |A|.

Case 2: A contains a proper subset S having |S| = |N(S)|. Note that since
S is a proper subset of A, by induction hypothesis we have that the subgraph of
G on (S, N(S)) satisfies Hall’s condition and hence we may find a matching on
this subgraph of size — S —. Let H be the subgraph of G on (A\S,B\N(S)):
Note that we have removed the same number of vertices from both A and B.
Let T be a subset of A\S. Then notice that NG(S ∪ T) = NG(S) ∪ NH(T)
and these two neighborhoods are disjoint. Furthermore by Hall’s condition we
have |NG(S ∪ T)| ≥ |S ∪ T | = |S|+ |T |. Therefore |NH(T)| = |NG(S ∪ T)| −
|NG(S)| ≥ |S| + |T | − |S| = |T | . and hence H satisfies Hall’s condition. We
thus can find a matching in H of size |A\S|. Taking the union of this matching
with the matching on S gives a matching in G of size |A| as desired.

Some obvious features of perfect Matching: (1) If G has an odd num-
ber of vertices, then it has no perfect matching. (2) If G has any isolated vertices
then it has no perfect matching. (3) If G has a component of odd size, then it
has no perfect matching.

Notation: For any given graph G, o(G) denote the number of odd compo-
nents of G.

Tutte’s Theorem: Let G be a graph . Then G contains a perfect
matching if and only if for every proper subset S ⊂ V (G) we have o(G\S) ≤ |S|.

Proof. We first consider the forward implication. Suppose that G con- tains
a perfect matching M. Let S = {v1, v2, , vk} ⊂ V (G) be a proper subset of V(G).
let G1, G2, · · · , Gn be the odd components of G\S. Since Gi is odd, some vertex
ui of Gi must be matched under M with a vertex vi of S. o(G\S) = n ≤ |S| Let
us now consider the backward implication. Let G be a graph on n vertices. We
shall prove this by induction on n. Note the base case is when n=2. Then G
is K2. It satisfies Tutte’s condition and has a perfect matching. Thus theorem
hold for n=2. We assume that if graph has n-2 or fewer vertices (note , we may
delete two vertices since no odd graph has a perfect matching and hence n is
even.) then the theorem holds. Now we have a graph G on n vertices in which
Tutte’s condition is satisfied. We consider two case:

case 1: For every proper subset S of V(G), O(G\S) ≤ |S| − 1. Note that
as n is even, we must have that o(G\S) and |S| are of the same parity. so

44

infact we have o(G\S) ≤ |S| − 2 for every proper subset of V(G). Fix an edge
uv and consider H = G\{u, v} having n-2 vertices. Let T ⊂ V (H). Note that
o(H\T) = O(G\(T ∪ {u, v})) ≤ |t ∪ {u, v}| − 2 = |T |. Hence H satisfies tutte’s
criterion and thus H has a perfect matching M0 Taking M = M0 ∪ {uv} yields
a perfect matching in G.

case 2: There exist a proper subset S of V(G) with o(G backslashS) = |S|.
Let S be the largest proper subset of V (G) having o(G\S) = |S| = k and let
S = {v1, v2, , vk}. We first claim that G\S contains only odd components. Let
if H be an even component of G\S. Then fix any vertex u0 ∈ V (H). Note
that H\{u0} must have atleast one odd component as it has an odd number of
vertices and hence |S∪{u0}| ≥ o(G\(S∪{u0})) ≤ |S∪{u0}|. yielding a strictly
larger set satisfying the hypothesis of the case. Hence no even component exist.
Let G1, G2, · · · , Gk be the k-components of G\S and each of these is odd.
Create a bipartite graph B as follows. Let V=S and let U = {u1, u2, , uk}. Put
an edges uivj in B if vj is adjacent to some vertex in Gi.

Claim: B satisfies Hall’s criterion. Suppose T is a proper subset of U with
|T | = t. Suppose that |N(T)| < |T |. Let S0 = {vi1, vi2, , vir} = N(T) ⊂ S,
with r < t. Note that for each ui ∈ T , we have that Gi is a compo- nent of G\S
0 . since it is adjacent to no other vertices in S. Hence o(G\S′) ≥ t > r = |S′|.
This is a contradiction of Tutte’s condition. Hence B satisfies Hall’s criterion.
Therefore , there exist a perfect matching M in B. Without loss of gen- erality
by relabel the components of G\S so that we have, for every vi ∈ S. That vi is
adjacent to some vertex of Gi call this vertex as ui . Let us first show that we
can find a perfect matching in Gj\ujj. If — V (Gj) —= 1 then we are done. if
not , suppose that |V (Gj)| ≥ 3.Let H = Gj\{uj}. Let W ⊂ V (H) be a proper
subset. Note that O(H\W) = o(G\(S ∪ {uj} ∪W)) − (k − 1). Since we have
all the odd components G1, G2, · · · , Gk. Excepting Gj counted in the right
hand side, which can be rectified by simply subtracting k-1. Moreover due to
maximality of S. We have o(G\(S ∪{uj}∪W)) < |S ∪{uj}∪W | = |W |+ k+1
and hence o(H\W) < |W |+k+1−(k−1) = |W |+2. As o(H\W) and |W | must
have same parity. This implies o(H\W)|W |. Hence H satisfies Tutte’s criterian.
Thus by induction we can form a perfect matching in H. By performing the
above procedure. We thus can form a perfect matching Mj in Gj\{uj} for all j.
Taking M1∪M2∪ ∪Mj ∪{u1v1, u2v2, , ukvk} yields a perfect matching in G.

6 Independent sets and covering

Independent set(Stable set): Let G(V, E) be a graph. A independent set is
a subset C of V such that no two vertices of C are adjacent in G. An independent
set is maximum if G has no independent set C’ with |C”| > |C|.

Vertex cover:A vertex cover is a set W of V such that every edge of G has
atleast one end in W. Definition 10. Edge cover:A edge cover is a subset F of
E such that for each vertex v there exist e ∈ F satisfying v ∈ e . Note: An edge
cover can exist only if G has no isolated vertices.

Notation:

45

α(G) = max{|C|/C}is a independent set.
τ(G) = min{|W |/W} is a vertex cover
v(G) = max{|M |/M}is a Matching
ϕ(G) = min{|F |/F}is an edge cover
Note: α(G) ≤ ρ(G)and v(G) ≤ τ(G)
Theorem A set C ⊂ V is an independent set of G if and only ifV \Cis a

vertex covering of G.
ProofBy definition , C is an independent set of G if and only if no edge of

G has both ends in Cor equivalently if and only if each edge has atleast one end
in V \C. But this is so if and only if V C is a vertex covering of G. Corollary
α(G)+τ(G) = n. Proof. Let C be a maximum independent set of G and W be a
minimum vertex covering of G. Then by above theorem V W is an independent
set and V \C is a vertex covering. Therefore n − τ(G) = |V \W | ≤ (G)· · ·(1).
n− (G) = |V \C| ≥ τ(G)· · ·(2). From (1) and (2) we have α(G) + τ(G) = n.

Gallai’s theorem:If G=(V, E) is a graph with- out isolated vertices then
v(G) + ρ(G) = |V | .

Proof Let M be a matching of size v(G). Let U be the set of M- un- saturated
vertices (vertices which are not end point of any edge in M). Since G has no
isolated vertex and M is maximum, there exist a set E’ of |U | edges, one incident
with each vertex in U. Clearly, M ∪E′ is an edge covering of G, and so ρ(G) ≤
|M ∪E′| = v(G) + (n− 2v(G)) = n− v(G) ρ(G) + v(G) ≤ n(1) Now let L be a
minimum edge covering of G, set H=G[L] and let M be a maximum matching
in H. Denote the set of M-unsaturated vertices in H by U. Since M is maximum,
H[U] has no links and therefore |L| − v(G) = |L\M | ≥ | ∪ | = n − 2v(G)
|L| + |M | ≥ n Because H is a subgraph of G, M is a matching in G and so
ρ(G) + v(G) ≥ |L| + |M | ≥ n ρ(G) + v(G) ≥ n(2) from (1) and (2) we get
ρ(G)+v(G) = n Let M be a matching and K be a covering such that |M | = |K|
then, M is a maximum matching and K is a minimum covering. Proof. If M’ is a
maximum matching and K’ is minimum covering then |M | ≤ |M ′| ≤ |K ′| ≤ |K|
Since |M | = |K|, it follows that |M | = |M ′| and |K| = |K ′|.

Koings matching Theorem In a bipartite graph, the number of edges in
a maximum matching is equal to the number of vertices in a minimum covering.

Proof Let G be a bipartite graph with bipartition (X, Y) and let M’ be a
maximum matching of G. Let U be the set of M’- unsaturated vertices in X and
Let Z be the set of all vertices connected by M’-alternating paths to vertices of
U. Let set S = Z ∩X and T = Z ∩ Y . Then by Hall’s theorem, we have that
every vertex in T is M’-saturated and N(S)=T. Define K ′ = (X\S) ∪ T . Every
edge of G must have atleast one of its ends in K’ or otherwise, there would be
an edge with one end in S and one end in Y \T , contradicting N(S)=T. Thus K’
is a covering of G and Clearly |M ′| = |K ′|. By above lemma K’ is a minimum
covering. The theorem follows.

Konigs’s edge covering theorem In a bipartite graph G with no isolated
vertex, the number of vertices in a maximum independent set is equal to the
number of edge in a minimum edge covering.

Proof let G be a bipartite graph with no isolated vertex, By Gallai’s the-
orem, we have (G) + τ(G) = v(G) + ρ(G) and since G is bipartite , it follows

46

from Konig’s matching theorem v(G) = τ(G). Thus α(G) = ρ(G).

7 The Personnel Assignment problem:

In a certain company , n workers X1, X2, · · · , Xn are available for n jobs y1, y2,
· · · , yn, each worker being qualified for one or more of these jobs. Can all the
men be assigned, one man per job, two jobs for which they are qualified? This
is the personnel assignment problem. We construct a bipartite graph G with
bipartition (X, Y), where X = {x1, x2, , xn} , Y = {y1, y2, , yn} and xi is joined
to yj if and only if worker xi is qualified for job yj . The problem becomes one
of determining whether or not G has a perfect matching. According to Hall’s
theorem either G has such a matching or there is a subset S of X such that
|N(S)| < |S|. Now we present an algorithm to solve the personnel assignment
problem.

Algorithm: Start with an arbitrary matching M.
(1) If M saturates every vertex in X then stop otherwise, Let u be an M-

unsaturated vertex in X. Set S = {u}and T = ϕ
(2)If N(S)=T then |N(S)| < |S|, Since |T | = |S| − 1 then stop. since by

Hall’s theorem there is no matching that saturates every vertex in X. Otherwise
, let y ∈ N(S)\T .

(3) If y is M-saturated, let yz ∈ M . Replace S by S ∪ {z} and T by
T ∪ {y} and go to step2. (observe that |T | = |S| − 1 is maintained after this
replacement.) Otherwise, let P be an M-augmenting (u − y) path. Replace M
by M’ = ME(P) and go to step 1. Consider a graph given below with initial
matching M = {x2y2, x3y3, x5y5}.

An M-alternating tree is grown, starting with x1 and the M-augmenting
path x1y2x2y1 found. as shown in figure below.

47

This result in a new matching M ′ = {x1y2, x2y1, x3y3, x5y5} as shown in
figure below.

An M’-alternating tree is now grown from x4. Since there is no M’- aug-
menting path with origin x4, the algorithm terminates.

The set S = {x1, x3, x4} with neighbour set N(S) = {y2, y3} shows that G
has no perfect matching.

48

7.1 Flow Chart of Hungarian Method:

The Hungarian Method

8 Ramsey Number

Clique: A clique of a simple graph G is a subset S of V(G) such that any two
vertices of S are adjacent. S is a clique of G if and only if S is an independent
set of Gc . If G has no large cliques, then G has a large independent set. The
above remark was first proved by Ramsey (1930).

Question: Among 6 people , there are either 3 who know each other or 3
who do not know each other.

Proof: Let 1,2,3,4,5,6 be the 6 people. Consider these 6 people as ver- tices
of graph. i vertex is connected to j vertex by an edge then it means i and j
know each other. otherwise they do not know each other. Let us select vertex

49

1 and join the with some of remaining vertices. By pi- genhole principle, either
1 knows 3 people or 1 does not know 3 people i.e 1 is connected to either 3
vertices or not connected to 3 vertices by an edge.

Case1:If 1 is adjacent to three vertices . If 1 is adjacent to three vertices
say a, b, c. If two of a, b, c are adjacent then 1 with those two vertices form
K3. This means 1 and other two people know each other.

Otherwise if none of a, b, c are adjacent. Then we get three isolated vertices,
i.e we get three people they do not know each other.

Case2: 1 is not adjacent to three vertices. If 1 is not adjacent to three
vertices a, b, c. If two of a, b, c are not adjacent then we get three vertices
isolated. means Three people do not know each other.

Definition If we color the edges of Kn with red or blue, then there is ethier
a set of r vertices such that edges among them are colored red or a set of b
vertices such that edges among them are colored blue.

Ramsey Numbers: For any positive integers k and l ≤ 2 there exist a
smallest integer t=r(k, l) such that any graph on t vertices contains either a
clique of k vertices or an independent set of l vertices. r(1,l)=r(k,1)=1 r(2, l)=l,
r(k, 2)=k, r(k, l)=r(l, k)

Theorem For any two integers k ≤ 2 and l ≤ 2 then prove that r(k, l) ≥
r(k, l − 1) + r(k − 1, l). Furthermore, if r(k, l - 1) and r(k - 1, l) are both even,
then strict inequality holds .

Proof.Let G be a graph on r(k, l - 1) + r(k - 1, l) vertices, and let v ∈ V .
We distinguish two cases:

Case1: v is non adjacent to a set of atleast r(k, l - 1) vertices. G[S] contains
either a clique of k vertices or an independent set of l 1 vertices and therefore
G[S v] contains either a clique of k vertices or an independent set of l vertices.

Case2: v is adjacent to a set T of atleast r(k - 1, l) vertices. G[T] contains
either a clique of k-1 vertices or an independent ser of l vertices. Therefore
G[T ∪ {v}]contains either a cilque of k vertices of an inde- pendent set of l
vertices. Since one of case(1) and case(2) must hold because the number of
ver- tices to which v is non adjacent plus the number of vertices to which v is
adjacent is equal to r(k, l - 1) + r(k - 1, l) - 1.

Proof. Thus r(k, l) ≤ r(k, l − 1) + r(k − 1, l) Now suppose that r(k, l-
1) and r(k-1, l) are both even and let G be a graph on r(k, l - 1) + r(k - 1,
l) - 1 vertices. Since G has an odd number of vertices, then some vertices v
is of even degree; in particular , v cannot be adjacent to precisely r(k-1, l)-1
vertices. Consequently, either case1 or case2 of above holds and therefore G
contains either a clique of k vertices or an independent set of l vertices. Thus
r(k, l) ≤ r(k, l − 1) + r(k − 1, l)− 1 as stated.

Theorem Prove that r(3, 3) = 6, r(3, 4) = 9, r(3, 5) = 14, r(4, 4) = 18.
Proof.(i): From Theorem above we can get, r(3, 3) ≥ r(3, 2) + r(2, 3) =

3 + 3 = 6 · · ·(1) From figure below , The 5 cycle contains no clique of three
vertices and no independent set of three vertices.

50

It shows that r(3, 3) ≤ 6 · · ·(2). from (1) and (2) r(3, 3) = 6
Proof. (ii) From Theorem above we can get, r(3, 4) ≤ r(3, 3)+r(2, 4)−1 =

6 + 4 − 1 = 9· · ·(1) The graph of figure below , contains no clique of three
vertices and no independent set of four vertices.

It shows that r(3, 4) ≤ 9 · · ·(2). from (1) and (2) r(3, 4) = 9
Proof. (iii) From Theorem above we can get r(3, 5) ≤ r(3, 4) + r(2, 5) =

9+5 = 14 · · ·(1) The graph of figure below , contains no clique of three vertices
and no independent set of five vertices.

51

It shows that r(4, 4) ≤ 18 · · ·(2). from (1) and (2) r(4, 4) = 18
Ramsey graph:A (k, l)- Ramsey graph is a graph on r(k, l) - 1 vertices that

contains neither a clique of k vertices nor an independent set of l vertices. Such
a graph exist for all k ≤ 2 and l ≤ 2. All the graph shown in the above theorem
represent Ramsey- graph.

52

