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1 Introduction and Preliminaries

Fixed point theory is one of the famous and traditional theories in Mathematics and it has a broad
number applications in different branches of Mathematics. In this theory contraction is one of the
main tools to prove the existence and uniqueness of a fixed point. The Banach contraction principle
{cf.[2]} is a very popular and effective tool to solving existence problems in many branches of
mathematical analysis and it is an active area of research since 1922. The famous Banach theorem
{cf. [2]} states that " Let (X, d) be a complete metric space and and T be a mapping of X into
itself satisfying d (T x,Ty) ≤ kd (x, y)∀ x, y ∈ X, where k is a constant in (0, 1). Then T has a
unique fixed point x∗ ∈ X."

Partial metric spaces as introduced by Matthews {[8]&[9]}, are the generalization of the notion
of metric spaces in which the condition d (x, x) = 0 is replaced by the condition d (x, x) ≤ d (x, y) in
the definition of metric. Different approaches in this area have been reported including applications
of mathematical techniques to computer science {cf. [7]&[13]}. In [9], Matthews discussed some
properties of convergence of sequences and investigated the fixed point theorems for contractive
mapping on partial metric spaces. Any mapping T of a complete partial metric space X into itself
that satisfies the inequality d (T x,Ty) ≤ kd (x, y), where 0 ≤ k < 1, for all x, y ∈ X, has a unique
fixed point. Recently, many authors {cf. [10],[11][12], [13] &[14]} have focused on this subject
and generalized some fixed point theorems from the class of metric spaces to the class of partial
metric spaces. The definition of partial metric space is given by Matthews in [8] as follows.

Definition 1.1. [8]Let X be a non empty set and let p : X × X → R+
0 satisfy

(PM1) . x = y⇔ p (x, x) = p (y, y) = p (x, y) ,
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(PM2) . p (x, x) ≤ p (x, y) ,
(PM3) . p (x, y) = p (y, x) ,

(PM4) . p (x, y) ≤ p (x, z) + p (z, y) − p (z, z) ,
for all x, y, z ∈ X, where R+

0 = [0,∞) . Then the pair (X, p) is called a partial metric space in short
PMS and p is called a partial metric on X.

Let X = {2, 3} be a non empty set and let p : X×X → R+
0 such that p (x, y) = min {|x − y| , |x + y|} ,

then we see that (X, p) is a partial metric space.

Let (X, p) be a PMS . Then the functions dp, dm : X × X → R+
0 given by

dp (x, y) = 2p (x, y) − p (x, x) − P (y, y)

and
dm (x, y) = max {p (x, y) − p (x, x) , p (x, y) − p (y, y)} ,

are usual metrics on X. It is clear that dp and dm are equivalent metric. It can be easily deduced
that dp (x, y) = |x − y| = dm (x, y) .

We are giving some definitions were defined by Matthews {[8]&[9]} as follows.
Definition 1.2. {[4],[8] & [9]} (i) A sequence {xn} in a PMS (X, d) converges to x ∈ X if and only
if p (x, x) = lim

n→∞
p (x, xn) .

(ii) A sequence {xn} in a PMS (X, d) is called a Cauchy sequence if and only if lim
n,m→∞

p (xn, xm)

exists (and finite).
(iii) A PMS (X, p) is said to be complete if every Cauchy sequence {xn} in X converges with

respect to τp to a point x ∈ X such that p (x, x) = lim
n,m→∞

p (xn, xm).

(iv) A mapping f : X → X is said to be continuous at x0 ∈ X if for every ε > 0, there exists a
δ > 0 such that f (B (x0, δ)) ⊂ B ( f (x0, ε)).

We introduce following lemmas which we will use in proof of the main results.
Lemma 1.1. {[4],[8]& [9]} (A) A sequence {xn} is Cauchy in a PMS (X, p) if and only if {xn} is
Cauchy in a metric space

(
X, dp

)
.

(B) A PMS (X, p) is complete if and only if the metric space
(
X, dp

)
is complete. Moreover,

lim
n→∞

p (x, xn) = 0 ⇔ p (x, x) = lim
n→∞

p (x, xn) = lim
n→∞

p (xn, x) , where x is a limit of the sequence {xn}

in
(
X, dp

)
.

Remark 1.1. Let (X, p) be a PMS . Therefore, we have
(A) if p (x, y) = 0, then x = y and
(B) if x , y, then p (x, y) > 0.

Lemma 1.2. [5] Assume xn → z as n → ∞ in a PMS (X, p) such that p (z, z) = 0. Then
lim
n→∞

p (xn, y) = p (z, y) for every y ∈ X.

Karapinar and Yuksel[6] investigated some common fixed point theorems in partial metric
spaces and obtained the following theorem.
Theorem 1.1. [6] Suppose that (X, p) is a complete PMS and T, S are self-mappings on X. If
there exists an r ∈ (0, 1) such that

p (T x, S y) ≤ rM (x, y) ,

for any x, y ∈ X, where

M (x, y) = max
{

p (T x, x) , p (S y, y) , p (x, y) ,
1
2

[
p (T x, y) + p (S y, x)

]}
,

then there exists z ∈ X such that Tz = S z = z.
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Jebril et al.[3] have investigated some common fixed point theorems under rational contraction
for a pair of mappings in bicomplex valued metric spaces and obtained the following result.

Theorem 1.2. [3] Let (X, d) be a complete bicomplex valued metric space and the mappings S ,T
: C2 → C2 satisfy

d(S z; Tz′) ≤ αd(z, z′) +
βd (z, S z) d (z′,Tz′)

d (z,Tz′) + d (z′S z) + d(z, z′)
,

for all z, z′ ∈ X such that d (z,Tz′) + d (z′S z) + d(z, z′) , 0 with z , z′, where α, β are non negative
real numbers with α+ β < 1 or d (z, z′) = 0 if d (z,Tz′) + d (z′S z) + d(z, z′) = 0. Then S and T have
a unique common fixed point.

Our results are the extension of Theorem 1.1 and modification of Theorem 1.2. Also we have
taken some concepts from the results of Jebril et al. [4].

2 Main Results

In this section we have proved two theorems, the first theorem as an extension of Theorem 1.1 and
the second theorem as a modification of Theorem 1.2.

Theorem 2.1. Let (X, p) be a partial metric space and the mappings S ,T : X → X satisfy

p (T x, S y)

(2.1) ≤ h max
{

p (x, y) + p (x,T x)
2

,
p (x, y) + p (y, S y)

2
, p (x,T x) + p (y, S y) − p (x, y)

}
,

for all x, y ∈ X where 0 < h < 1. Then S and T have a common fixed point in X.

Proof. We choose an arbitrary point x0 ∈ X. Sequence {xn} can be formed in X such that S x0 =
x1, T x1 = x2, S x2 = x3, T x3 = x4, ...

(2.2) i.e., S x2n = x2n+1,T x2n+1 = x2n+2 for n = 0, 1, 2, ...

If there exists a positive integer n0 such that x 2n0 = x 2n0+1, then x 2n0 is a fixed point of S and hence
a fixed point of T. Indeed, since x 2n0 = x 2n0+1 = S x2n0 , then

(2.3) x 2n0+1 = x 2n0 = S x 2n0 = S x 2n0+1.

We have to show that the sequence {xn} is Cauchy sequence. For putting x = x2k and y = x2k+1 in
(2.1), we have

p
(
x2n0+2, x2n0+1

)
= p

(
T x2n0+1, S x2n0

)
≤ h max


1
2
(
p
(
x2n0+1, x2n0

)
+ p

(
x2n0+1,T x2n0+1

))
,

1
2
(
p
(
x2n0+1, x2n0

)
+ p

(
x2n0 , S x2n0

))
,(

p
(
x2n0+1,T x2n0+1

)
+ p

(
x2n0 , S x2n0

)
− p

(
x2n0+1, x2n0

))


= h max


1
2
(
p
(
x2n0+1, x2n0

)
+ p

(
x2n0+1, x2n0+2

))
,

1
2
(
p
(
x2n0+1, x2n0

)
+ p

(
x2n0 , x2n0+1

))
,(

p
(
x2n0+1, x2n0+2

)
+ p

(
x2n0 , x2n0+1

)
− p

(
x2n0+1, x2n0

))


= h max
{

1
2
(
p
(
x2n0+1, x2n0

)
+ p

(
x2n0+1, x2n0+2

))
,

p
(
x2n0 , x2n0+1

)
, p

(
x2n0+1, x2n0+2

) }
≤ h max

{
p
(
x2n0 , x2n0+1

)
, p

(
x2n0+1, x2n0+2

)}
, as

1
2

(a + b) ≤ max(a, b)

= h max
{
p
(
x2n0 , x2n0

)
, p

(
x2n0+1, x2n0+2

)}
, as x 2n0 = x 2n0+1 by assumption

= h · p
(
x2n0+1, x2n0+2

)
, by (PM2) .
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Therefore we have (1 − h) · p
(
x2n0+1, x2n0+2

)
≤ 0, then p

(
x2n0+1, x2n0+2

)
= 0, since h < 1, which

yields that T x2n0+1 = x2n0+2 = x2n0+1 i.e., x2n0+1 is a fixed point of T. Also x2n0 is a fixed point of
S . Therefore x2n0

(
= x2n0+1

)
is a common fixed point of S and T. A similar conclusion holds if it is

seen that x2n0+1 = x2n0+2 for some positive integer n0. Therefore we may assume that xn , xn+1 for
all n.

Case-I:
Let n be an odd number. Then by (2.1) we have

p (xn+1, xn+2) = p (T xn, S xn+1)

≤ h max
{

1
2 (p (xn, xn+1) + p (xn,T xn)) , 1

2 (p (xn, xn+1) + p (xn+1, S xn+1)) ,
(p (xn,T xn) + p (xn+1, S xn+1) − p (xn, xn+1))

}
= h max

{
1
2 (p (xn, xn+1) + p (xn, xn+1)) , 1

2 (p (xn, xn+1) + p (xn+1, xn+2)) ,
(p (xn, xn+1) + p (xn+1, xn+2) − p (xn, xn+1))

}
= h max

{
p (xn, xn+1) ,

1
2

(p (xn, xn+1) + p (xn+1, xn+2)) , p (xn+1, xn+2)
}

≤ h max {p (xn, xn+1) , p (xn+1, xn+2)} , as
1
2

(a + b) ≤ max {a, b}

= h · p (xn, xn+1) .

Because, if we take max {p (xn, xn+1) , p (xn+1, xn+2)} = p (xn+1, xn+2) , then above inequality yields
xn+1 = xn+2, which contradicts our assumption that xn , xn+1 for all n.

Case-II
If n is even number, then by (2.1) we get that

p (xn+2, xn+1) = p (T xn+1, S xn)

≤ h max
{

1
2 (p (xn+1, xn) + p (xn+1,T xn+1)) , 1

2 (p (xn+1, xn) + p (xn, S xn)) ,
(p (xn+1,T xn+1) + p (xn, S xn) − p (xn+1, xn))

}
= h max

{
1
2 (p (xn+1, xn) + p (xn+1, xn+2)) , 1

2 (p (xn+1, xn) + p (xn, xn+1)) ,
(p (xn+1, xn+2) + p (xn, xn+1) − p (xn, xn+1))

}
= h max

{
1
2

(p (xn, xn+1) + p (xn+1, xn+2)) , p (xn, xn+1) , p (xn+1, xn+2)
}

≤ h max {p (xn, xn+1) , p (xn+1, xn+2)} , as
1
2

(a + b) ≤ max {a, b}

= h · p (xn, xn+1) .

Here also max {p (xn, xn+1) , p (xn+1, xn+2)} = p (xn, xn+1) is taken for the similar reason as odd
number. Therefore the inequality

(2.4) p (xn+1, xn+2) ≤ hp (xn, xn+1) ,

holds for all n = 0, 1, 2, ... Hence {p (xn, xn+1)} is a non increasing sequence of non negative real
numbers. Using the result(2.4) , it can easily be proved that

(2.5) p (xn, xn+1) ≤ hn p (x0, x1) , ∀ n = 0, 1, 2, ...

Now let us consider that

dp (xn+1, xn+2) = 2p (xn+1, xn+2) − p (xn+1, xn+1) − p (xn+2, xn+2) ≤ 2p (xn+1, xn+2) ,

(2.6) i.e., dp (xn+1, xn+2) ≤ 2hn+11p (x0, x1) .
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Since 0 < h < 1, from (2.5) and (2.6) we get that lim
n→∞

dp (xn+1, xn+2) = 0. Moreover by 2.6 we have

dp (xn+1, xn+s) ≤ dp (xn+1, xn+2) + ... + dp (xn+s−1, xn+s)

≤ 2hn+1 p (x0, x1) + ... + 2hk+s p (x0, x1) .

After standard calculation, we obtain that {xn} is a Cauchy sequence in
(
X, dp

)
i.e., dp (xn, xm)→ 0

as n,m→ ∞. Since (X, p) is complete, by Lemma 1.1 we have
(
X, dp

)
is complete and the sequence

{xn} is convergent in
(
X, dp

)
to z ∈ X (say)

Again by Lemma 1.1, we have

(2.7) p (z, z) = lim
n→∞

p (xn, z) = lim
n,m→∞

p (xn, xm) .

Since {xn} is a Cauchy sequence in
(
X, dp

)
, therefore we have lim

n,m→∞
dp (xn, xm) = 0. We assert that

lim
n,m→∞

p (xn, xm) = 0. Without loss of generality, let us assume that m > n. Then we observe that

p (xn, xn+2) ≤ p (xn, xn+1) + p (xn+1, xn+2) − p (xn+1, xn+1) ,

(2.8) i.e., p (xn, xn+2) ≤ p (xn, xn+1) + p (xn+1, xn+2) .

Using 2.8 it follows that

p (xn, xn+3) ≤ p (xn, xn+2) + p (xn+2, xn+3) − p (xn+2, xn+2)
≤ p (xn, xn+2) + p (xn+2, xn+3)
≤ p (xn, xn+1) + p (xn+1, xn+2) + p (xn+2, xn+3) .

Therefore by induction we obtain that

(2.9) p (xn, xm) ≤ p (xn, xn+1) + p (xn+1, xn+2) + ... + p (xm−1, xm) .

With the help of (2.4) , the expression (2.9) reduces to

p (xn, xm) ≤ hn p (x0, x1) + hn+1 p (x0, x1) + ... + hm−1 p (x0, x1) ,

(2.10) i.e., p (xn, xm) ≤ hn(1 + h + ... + hm−n−1)p (x0, x1) .

(2.11) Since h < 1 , taking n,m→ ∞ we can make hn → 0 and so lim
n,m→∞

p (xn, xm) = 0.

Therefore, from (2.7) , we have

(2.12) p (z, z) = lim
n→∞

p (xn, z) = lim
n,m→∞

p (xn, xm) = 0.

We assert that Tz = z. On the contrary, assume Tz , z. Then p (z,Tz) > 0. Let
{
x2n(i)

}
be a

subsequence of {x2n} and hence of {xn}. Due to (2.1) and (2.2) we have

p
(
x2n(i)+1,Tz

)
= p

(
S x2n(i),Tz

)
= p

(
Tz, S x2n(i)

)
≤ h max

{
1
2
(
p
(
z, x2n(i)

)
+ p (z,Tz)

)
, 1

2
(
p
(
z, x2n(i)

)
+ p

(
x2n(i), S x2n(i)

))
,(

p (z,Tz) + p
(
x2n(i), S x2n(i)

)
− p

(
z, x2n(i)

)) }
.
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Taking limit as n→ ∞, we get

p (z,Tz) ≤ h max
{

1
2

(0 + p (z,Tz)) ,
1
2

(0 + 0) , (p (z,Tz) + 0 − 0)
}

= hp (z,Tz) .

Thus p (z,Tz) ≤ hp (z,Tz) . Since h < 1, therefore p (z,Tz) = 0 and hence by Remark(2.1) , we get
Tz = z. Analogously, if we choose a subsequence

{
x2n(i)+1

}
of {x2n+1} , we can prove that S z = z.

Hence z is a common fixed point of S and T i.e., Tz = S z = z.
This completes the proof of the theorem. �

Theorem 2.2. Let (X, p) be a complete partial metric space and let the mappings S ,T : X → X
satisfy

(2.13) p (S x,Ty) ≤ αp (x, y) + β
p (x, y) p (x,Ty) + p (x, y) p (y, S x)

p (x, S x) + p (y,Ty)
,

for all x, y ∈ X such that x , y, where α and β are non negative real numbers with α + β < 1
2 . If

p (x,Ty) , p (y, S x) , p (x, S x) and p (y,Ty) satisfy the condition

(2.14) p (x,Ty) + p (y, S x) ≤ 2 {p (x, S x) + p (y,Ty)} ,

then the pair (S ,T ) have a unique common fixed point in X.

Proof. Let us choose an arbitrary point x0 ∈ X. Sequence {xn} can be formed in X such that
S x0 = x1, T x1 = x2, S x2 = x3, T x3 = x4, ...i.e.,

S x2n = x2n+1,T x2n+1 = x2n+2.

Then from (2.13)we get
p (x2n+1, x2n+2) = p (S x2n,T x2n+1)

≤ αp (x2n, x2n+1) + β
p (x2n, x2n+1) p (x2n,T x2n+1) + p (x2n, x2n+1) p (x2n+1, S x2n)

p (x2n, S x2n) + p (x2n+1,T x2n+1)
,

i.e., p (x2n+1, x2n+2) ≤αp (x2n, x2n+1) +

βp (x2n, x2n+1)
p (x2n, x2n+2) + p (x2n+1, x2n+1)
p (x2n, x2n+1) + p (x2n+1, x2n+2)

.(2.15)

Also from triangle property of PMS we get that

p (x2n, x2n+2) ≤ p (x2n, x2n+1) + p (x2n+1, x2n+2) − p (x2n+1, x2n+1) ,

which implies that

(2.16)
p (x2n, x2n+2) + p (x2n+1, x2n+1)
p (x2n, x2n+1) + p (x2n+1, x2n+2)

≤ 1.

Hence from (2.13) and (2.16) , we obtain that

p (x2n+1, x2n+2) ≤ (α + β) p (x2n, x2n+1) = hp (x2n, x2n+1) ,

where h = α + β < 1
2 ,

(2.17) i.e., p (x2n+1, x2n+2) ≤ hp (x2n, x2n+1) .
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Again we have that

p (x2n+3, x2n+2) = p (S x2n+2,T x2n+1) ≤ αp (x2n+2, x2n+1)

+β
p (x2n+2, x2n+1) p (x2n+2,T x2n+1) + p (x2n+2, x2n+1) p (x2n+1, S x2n)

p (x2n+2, S x2n+2) + p (x2n+1,T x2n+1)
,

(2.18) ≤ αp (x2n+2, x2n+1) + βp (x2n+2, x2n+1)
p (x2n+2, x2n+2) + p (x2n+1, x2n+3)
p (x2n+2, x2n+3) + p (x2n+1, x2n+2)

.

Using the condition (PM4) , we get that

(2.19)
p (x2n+2, x2n+2) + p (x2n+1, x2n+3)
p (x2n+2, x2n+3) + p (x2n+1, x2n+2)

≤ 1.

Therefore by 2.19 we get that

p (x2n+3, x2n+2) ≤ αp (x2n+2, x2n+1) + βp (x2n+2, x2n+1)
= (α + β) p (x2n+2, x2n+1) ,

Therefore the inequality p (xn+1, xn+2) ≤ hp (xn, xn+1) holds for all n = 0, 1, 2, ...Hence {p (xn, xn+1)}
is a non increasing sequence of non negative real numbers. Using (2.6) , (2.7) and (2.10) , we get

p (xn, xm) ≤ hn 1
1 − h

p (x0, x1) .

Again using (2.12), we obtain that

p (u, u) = lim
n,m→∞

p (xn, u) = lim
n,m→∞

p (xn, xm) = 0.

Now we assert that p (u, S u) = 0. If possible, let p (u, S u) > 0. Then

p (u, S u) ≤ p (u, x2n+2) + p (x2n+2, S u) − p (x2n+2, x2n+2)
= p (u, x2n+2) + p (T x2n+1, S u) − p (x2n+2, x2n+2)
≤ p (u, x2n+2) + αp (x2n+1, u) − p (x2n+2, x2n+2)

+β
p (x2n+1, u) p (x2n+1,Tu) + p (x2n+1, u) p (u, S x2n+1)

p (x2n+1, S x2n+1) + p (u,Tu)
≤ p (u, x2n+2) + αp (x2n+1, u) − p (x2n+2, x2n+2)

+βp (x2n+1, u)
p (x2n+1,Tu) + p (u, x2n+2)
p (x2n+1, x2n+2) + p (u,Tu)

.

Taking limit as n→ ∞, we get that

p (u, S u) ≤ p (u, u) − p (u, u) + αp (u, u) + βp (u, u)
p (u,Tu) + p (u, u)
p (u, u) + p (u,Tu)

= (α + β) p (u, u) < p (u, u) , as (α + β) <
1
2

which contradicts the condition (PM2). Therefore p (u, S u) = 0. Hence u is a fixed point of S .
Similarly, it can be shown that u is also a fixed point of T . Hence u is a common fixed point of S
and T.

Uniqueness:
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If possible let u∗ be another common fixed point of T and S . Now we see that

p (u, u∗) ≤ p (u, x2n+1) + p (x2n+1, u∗) − p (x2n+1, x2n+1)
= p (u, x2n+1) + p (S u,Tu∗) − p (x2n+1, x2n+1)

≤ p (u, x2n+1) + αp (u, u∗) + β
p (u, u∗) p (u,Tu∗) + p (u, u∗) p (u∗, S u)

p (u, S u) + p (u∗,Tu∗)
− p (x2n+1, x2n+1)

= p (u, x2n+1) + αp (u, u∗) + βp (u, u∗)
p (u,Tu∗) + p (u∗, S u)
p (u, S u) + p (u∗,Tu∗)

− p (x2n+1, x2n+1) .

Taking limit as n→ ∞, we get that

(2.20) p (u, u∗) ≤ p (u, u) + αp (u, u∗) + βp (u, u∗)
p (u,Tu∗) + p (u∗, S u)
p (u, S u) + p (u∗,Tu∗)

− p (u, u) .

Also from (2.14) , we get that

p (u,Tu∗) + p (u∗, S u) ≤ 2 {p (u, S u) + p (u∗,Tu∗)} ,

which implies that

(2.21)
p (u,Tu∗) + p (u∗, S u)
p (u, S u) + p (u∗,Tu∗)

≤ 2.

Using condition (2.21) in (2.20) , we get that

p (u, u∗) ≤ αp (u, u∗) + 2 · βp (u, u∗) ≤ 2 · (α + β) p (u, u∗)
⇒ (1 − 2 · (α + β)) p (u, u∗) ≤ 0

⇒ p (u, u∗) ≤ 0 as (α + β) <
1
2
.

Thus we conclude that p (u, u∗) = 0, which shows that u = u∗. Hence u is a unique common fixed
point of S and T. Hence the proof of the theorem is established. �

3 Future Prospect

In the line of works as carried out in the paper one may think of the deduction of fixed point
theorems under different conditions in complex valued partial metric spaces and this may be an
active area of research to the future workers in this branch.
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